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Abstract. This is a survey of combinatorial models for covering spaces of
the complement of a complexified hyperplane arrangement. We obtain a uni-
fied picture of the subject, and a generalization of various known results,
by exploiting the toolkit of homotopy colimits for combinatorial applications
developed by Welker, Ziegler and Živaljević.

Introduction

A cover of an arrangement is a topological cover of the space obtained by removing
a finite set of hyperplanes from a complex, finite-dimensional vector space.

The study of combinatorially defined complexes modeling covers of arrange-
ments has a story that goes back to the beginnings of the topological theory of
hyperplane arrangements, and arises in the context of finite real reflection groups,
where one can consider the set of hyperplanes (‘mirrors’) fixed by the reflections
in the group. In 1971 Brieskorn [16] conjectured the complement of the complexi-
fication of this set of hyperplanes to be an aspherical space (we then say that this
is a K(π, 1)-arrangement).

Brieskorn’s conjecture was settled by a general theorem of Deligne [29], who
proved that the complexification of any real arrangement of linear hyperplanes
whose chambers are simplicial cones is K(π, 1). The idea was to prove contractibil-
ity of the universal covering space of the arrangement’s complement, and the
method involved designing a cell complex that, under certain conditions, mod-
els the universal cover of the arrangement’s complement.

The K(π, 1) problem for hyperplane arrangements, i.e., the problem of decid-
ing whether the property of being K(π, 1) is determined by the combinatorics of
the lattice of intersections of the hyperplanes, is still open and in the focus of active
research. The construction and the study of different models for the universal cov-
ering space of arrangement complements has been one of the main strategies used
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to attack this problem. Alternative approaches have been successfully exploited -
most notably the idea to reduce the problem to a lower dimensional situation by
linear fibrations (that led to the concept of supersolvable arrangements [76, 37]),
the use of fibrations onto the complex torus [54], or a mix of the different tech-
niques [21]. For a general reading on the K(π, 1) problem for arrangements we
point to the survey of Falk and Randell [38, 39].

Among more recent topics in arrangement theory are the study of local sys-
tem cohomology on arrangement complements and of the topology of the Milnor
fiber. In both these subjects, the homology of certain covering spaces plays an
important role (see e.g. [27] and [30]).

For general complex arrangements not much is known. Björner and Ziegler
[11] described a simplicial model for the complement of a complex arrangement,
but no description of the covering space is at hand. After previous partial results
of Nakamura [53], the case of finite complex reflection arrangements was recently
settled by Bessis [3], who described a model for the universal cover of the orbit
space and showed its contractibility using the theory of Garside groups and Gar-
side categories, thus proving the K(π, 1) conjecture for this class of arrangements
(for more details see Remark 5.15 and Section 6).

In this survey we present a unified view on the different combinatorial models
for covers of complexified real arrangements.

We put the subject into the framework of the theory of diagrams of spaces and
homotopy colimits for combinatorial applications, as developed by Welker, Ziegler
and Živaljević in [81]. Diagrams of spaces have already been fruitfully exploited to
study the link of hyperplane arrangements (i.e., the space defined by the union of
the hyperplanes) [82, 77, 46]. In our context, these techniques allow for instance to
link the two main classes of complexes we will be dealing with, namely the Salvetti-
type models Wρ (Definition 3.1) and the Garside-type models Uρ (Definition 5.1).
Each of these types of models generalizes some known constructions, that we will
explain. We thus obtain a unified picture of the subject. Moreover, this language
allows us to apply the known techniques for the study of the homotopy type of
diagram of spaces.

We will use some facts from the covering theory of groupoids. Also, we will
meet along our way the notion of oriented systems (with a corresponding covering
theory) as introduced by Paris [59]. We hope that the chosen notation and the
explanations will succeed in clarifying the interplay among the different notions of
“cover”, nevertheless avoiding confusion.

We will begin our exposition by recalling some definitions and facts that are
nowadays standard in arrangement theory. In Section 2 we introduce diagrams of
spaces and their homotopy colimits and state some basic facts about them.

Then, in Section 3 we will present a first type of diagram models and study
their homotopy colimits. For every topological cover of the given arrangement we
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construct a diagram which homotopy colimit is isomorphic to the given covering
space, and can be written as the order complex of an explicitly described poset.
These models are called of Salvetti type because the model of the identical cover is
actually isomorphic to the complex introduced by Salvetti in [67]. Specializing to
the universal covering of arrangements of linear hyperplanes we recover naturally
the simplicial complex obtained by Luis Paris in [60]. Moreover, we will mention
here the work of Charney and Davis on Artin groups [22, 23], also pointing to an
application of it given by Charney and Peifer [24] in the context of affine reflection
arrangements.

In fact, Paris constructed topological models for arbitrary covers of linear ar-
rangements [59]. In Section 4 we first explain this construction. Then, we describe
a stratification of it which nerve is isomorphic to the poset obtained from the dia-
gram model of the corresponding cover, thereby showing that the diagram models
offer a compact and handy description (in fact, as order complexes of posets) of
Paris’ models.

Restricting our attention from affine to linear real arrangements, Section 5
introduces another type of diagram models generalizing a construction that arose
in the context of Garside groups [14, 5, 25]. We call them therefore of Garside
type. As an application, we then explain how Deligne’s argument can be reformu-
lated in view of this type of models. The closing section is about possible further
applications and directions of work.
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1. Notations and recalls

1.1. Arrangements

We will denote by A a collection of affine hyperplanes in Rd, also called a real
arrangement. Our considerations will restrict to the case where the arrangement
is locally finite (i.e., every point of Rd is contained in at most finitely many hyper-
planes) and essential (i.e., the minimal intersections of hyperplanes are points).

The classical reference on arrangements of hyperplanes is the textbook of
Orlik and Terao [56], and for the combinatorics of real arrangements in terms of
oriented matroids we point to [10]. Let us here only recall the facts that we will
need.

The closed strata that are determined by A in Rd are the faces of A. The
support of a face F is the set supp(F ) of all hyperplanes containing F . The set
of faces of A is partially ordered by reverse inclusion, so that for any two faces
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F1, F2 we have F1 ≥ F2 if and only if F1 ⊆ F2: this defines the poset of faces of
the arrangement, denoted by F(A).

The minimal elements of F(A) are the connected components that are cut out
in Rd by A and are usually called chambers, or regions. Given two chambers C1, C2

of A, one may choose a point in the interior of each chamber and consider the line
segment spanned by these points. The hyperplanes that are met by this segment
separate C1 from C2; the set of all hyperplanes separating C1 from C2 is denoted
by S(C1, C2). Two chambers are said to be adjacent if they are separated by only
one hyperplane. If the arrangement is linear, we define the opposite of a chamber
C to be the unique chamber −C so that S(C,−C) = A. If C is any chamber and
F any face of A, we will denote by CF the unique chamber that contains F in its
closure, and that is not separated from C by any of the hyperplanes that contain
F - i.e, such that CF < F and S(CF , C)∩ supp(F ) = ∅. The set of all regions of A
will be written T (A) and can be given different partial orderings, depending on the
choice of a base element. Once a base chamber B ∈ T is fixed, an associated partial
order ≺B can defined by setting C1 4B C2 if and only if S(B,C1) ⊆ S(B,C2).
This gives rise to the poset of regions of A with base B (introduced in [35]), that
we will denote by TB(A).

The arrangement graph G(A) has T (A) as set of vertices, and it is constructed
by putting two opposite oriented edges between each pair of vertices that represent
adjacent chambers. As an example, see the left side of Figure 1 for a picture of
G(A) when A consists of two lines in the plane. A directed path in the arrangement
graph is called positive; it is called also minimal if it does not “cross” twice any
hyperplane.

The complexification of the arrangement A is the set AC of the complex
hyperplanes obtained by considering the same (real) defining equations as for the
elements of A. We will be interested in the topology of the complement of the
complexification (sometimes just called the arrangement’s complement)

M(A) := Cd \
⋃
AC.

1.2. Posets

We give a short review of some basic facts and notations about partially ordered
sets (or, for short, posets). For a careful exposition of the subject see [75]. Given
two elements x, y in a poset P we denote by x∨ y their unique least upper bound
(or join) and by x ∧ y their unique maximal lower bound (or meet), if these exist.
A poset where the meet and the join exist for every pair of elements is called
a lattice. Given two posets P and Q, we will partially order their disjoint union
P

∐
Q by letting x ≥ y if and only if either both x, y ∈ P and x ≤ y in P, or

x, y ∈ Q and x ≤ y in Q. The main topological object associated to a poset P
is its order complex ∆(P), that is the simplicial complex of the totally ordered
subsets of P. It is clear that if P has a unique minimal element 0̂, then the order
complex ∆(P) will be a cone with apex 0̂, and thus in particular contractible. The
analogous statement holds of course when P has a unique maximal element.
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1.3. The Salvetti complex

We introduce the tool that will allow us to link the topology of M(A) to the
combinatorics of the real arrangement. Let us begin with the abstract definition.

Definition 1.1. Let S(A) be the set of all pairs (F,C) with F ∈ F , C ∈ T and
C < F . We give this set a partial order by setting (F1, C1) > (F2, C2) if and only
if F1 > F2 in F and C2 = (C1)F . The (simplicial version of the) Salvetti complex
is

Sal(A) := ∆(S(A)).

The importance of this object lies in the following fundamental theorem, that
was proved by Mario Salvetti by constructing an explicit homotopy equivalence.

Theorem 1.2 (Theorem 1 of [67]). For every real arrangement A, the geometrical
realization of Sal(A) can be embedded into the arrangement’s complement, and is
a strong deformation retract of M(A).

There is another way to look at this complex. Indeed, the poset S(A) satisfies
the conditions given in [6] for a general poset to be actually the poset of cells of
a regular CW-complex. Thus, ∆(S(A)) is the barycentric subdivision of a regular
CW-complex that we will call Sal(A) as well.

Remark 1.3. An explicit construction of the CW-version of the Salvetti complex
is the following. Start with a geometric realization of the arrangement graph,
and take it as the 1-skeleton of the CW-complex. The attaching of the higher
dimensional cells [F,C] is defined recursively by saying that the 1-skeleton of [F,C]
consists of the positive minimal paths that start at C and end at the chamber
opposite to C with respect to supp(F ); a cell [G, K] is then contained in the
boundary of [F,C] if and only if the 1-skeleton of [G, K] is a directed subgraph of
the 1-skeleton of [F,C] (see [67]).

Example 1.4. As an example we consider the arrangement of two lines passing
through the origin of R2. The picture illustrates the arrangement graph and two
2-cells with their boundary.

Figure 1. The arrangement of two lines in the plane with its
arrangement graph, and two 2-cells of the cellular version of the
associated Salvetti complex.

Those are the cells [F,C] where F is the only codimension-2 face, namely the
origin, and C is the chamber associated to the marked vertex. Note the boundary
consisting of the positive minimal paths. The full complex has one such 2-cell for
every chamber. M
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1.4. The arrangement groupoid

A groupoid is a category where every arrow is invertible. This notion was first
introduced by Brandt [15] as a generalization of the concept of group that he de-
veloped in his study of quadratic forms. According to [19], the use of groupoids in
topology goes back to Reidemeister [65]. Let us mention also the work of Gabriel
and Zisman [40], who explain and exploit the functorial relations between topolog-
ical spaces, simplicial sets, and the associated groupoids. More recent textbooks
exploiting groupoids in topology were written by Higgins [44] and Brown [17].

One of the classical features of groupoids is their nice covering theory, that
parallels the theory of topological spaces. As this is a very classical topic, we will
sketch the definitions and state the results we need; proofs and complements can
be found in the elementary approach to the topic by Brown [18], while the book
by Gabriel and Zisman [40] provides a more advanced treatment of the subject,
together with its homological implications. For connections with homotopy of di-
agrams of spaces, see [19, 20]. For the basics about categories we refer to [49].

Let Q be a groupoid and consider an x ∈ Ob(Q) (we will use latin lowercase
letter for objects, and Greek lowercase letters for morphisms). The set of endomor-
phisms End(x) has a natural group structure that does not depend on the choice
of x; this group is called the object group of Q and will be denoted by πQ for
reasons that will become clear later. The source and target object of a morphism
ω will be indicated by start(ω) and end(ω), respectively. The star of the object x
is the set

St(x) := {ω ∈ Mor(Q) | start(ω) = x}
of all morphisms of Q that start in x. The groupoid Q is called connected if for
every x, y ∈ Ob(Q) there is a morphism ω with x = start(ω) and y = end(ω).

Definition 1.5. A morphism of groupoids is a functor

ρ : Q′ → Q

between groupoids. If Q is connected, then ρ is called a covering if, for every
z ∈ Ob(Q′), the induced map

ρz : St(z) → St(ρ(z))

is bijective. Given a α ∈ Mor(Q) and any z ∈ ρ−1(start(α)), the lift of α at z is
the morphism ρ−1

z (α), and will be written α〈z〉 when the covering ρ is understood.

Example 1.6. The groupoid described in Example 1.14 is a cover of the groupoid
of Example 1.11: the bijection can be checked directly. At the end of Example 1.15
we sketch the proof that the groupoid of Example 1.15 is a cover of the one defined
in Example 1.12. M

If ρ is a covering of groupoids as above, the object group End(z) = πQ′ is
mapped isomorphically by ρ to a subgroup of End(ρ(z)) = πQ that is called the
characteristic group of the covering.

The following result is classical.
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Theorem 1.7 (see 9.4.3 of [18]). Let Q be a connected groupoid, H a subgroup
of πQ, and choose a base object x ∈ Ob(Q). Consider the groupoid Q′ defined
by setting Ob(Q′) := {Hω | ω ∈ St(x)} and where the morphisms between Hω1

and Hω2 correspond to morphisms α from end(ω1) to end(ω2) in Q such that
Hω1α = Hω2.

The functor ρ : Q′ → Q mapping Hω to end(ω) is a covering of groupoids
with characteristic group H.

Definition of the arrangement groupoid. Consider the free category on the ar-
rangement graph (see [49, section II.4] for the definition), whose morphisms cor-
respond to directed paths in G(A).

Example 1.8. Take as an example the 1-dimensional arrangement given by the
zero point inside the real line, that we will call A1. This arrangement has clearly
two chambers A,B, and its arrangement graph consists of two vertices joined by
two directed edges: the edge a directed from A to B, and the edge b directed from
B to A (see Figure 5). The free category on it has two objects A,B, and the sets
of morphisms are

Mor(A,A) = {(ab)n | n ∈ N≥0}
Mor(A,B) = {(ab)na(ba)m | m,n ∈ N≥0} = {(ab)na | n ∈ N≥0}.

and analogously for Mor(B,B) and Mor(B,A). M

Returning to the general situation, let R denote the smallest equivalence re-
lation compatible with morphism composition and that identifies every two mor-
phisms that come from positive minimal paths with same beginning and target.
We might then build the quotient category G+ := Free(G(A))/R, called the
category of positive paths.

It is clear that Ob(G+(A)) = T (A). In general, the equivalence relation is
such that any two chambers C1, C2 determine an equivalence class of positive
minimal paths starting at C1 and ending at C2; we will write (C1 → C2) for any
morphism representing this class.

Example 1.9. In the previous example, the relation is empty. To see a case where it
actually plays a role, let A2 be the arrangement of two lines considered in Example
1.4 and depicted in Figure 1 together with its arrangement graph. The vertex set
of G(A2) is {C0, C1, C2, C3} (say, in counterclockwise order in Figure 1) and we
may label the edges ei,i±1, where the edge ei,j is directed from the vertex Ci to
the vertex Cj (the indexing is taken modulo 4). The set of morphisms from Ci to
Cj in the free category Free(G) is the set of directed paths in G starting at Ci

and ending in Cj . The positive minimal paths in G are either single-edge paths or
paths of length two of the form

ei,i+1ei+1,i+2 or ei,i−1ei−1,i−2.

For any fixed i, the two above paths share the same start and the same target.
Let us represent a directed path in G with the corresponding word in the alphabet
{ei,i±1}i=0,...,3. The set of morphisms from Ci to Cj in G+ is obtained from the set
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of directed paths from Ci to Cj after identification of any two paths represented
by words that can be transformed into one another by a sequence of substitutions
of the form ei,i+1ei+1,i+2 ↔ ei,i−1ei−1,i−2.

To describe the set of morphisms of G+ in this case, consider any directed
path in the arrangement graph starting, say, at C0, and let us parse it following
the orientation of the edges. The first two letters of ω either describe a loop (in
which case the third letter represents an edge starting at C0) or a positive minimal
path. In the latter case, two situations may occur. If the second and third letter
define a directed loop in the graph, then we can apply two “substitutions” as in
Figure 2 to see that this three-edges path is equivalent to one which makes a loop
based at C0, and thus ω is equivalent to a path which third vertex is again C0.

IIII II

Figure 2

If the second and third letter define a positive minimal path, then we are
already in the situation of Figure 2.II and one substitution suffices to show that
ω is equivalent to a path which third vertex is C0. So in any case we know that
ω is equivalent to a loop followed by a directed path ω′ still starting at C0 but
two edges shorter than ω. By induction we see that MorG+(C0, C0) is the free
commutative monoid with generators e0,1e1,0 and e0,3e3,0, and

MorG+(C0, Cj) = {α(C0 → Cj) | α ∈ MorG+(C0, C0)}.
M

Let us again return to the general construction. We can now state the defi-
nition of the arrangement groupoid.

Definition 1.10. The arrangement groupoid G(A) is obtained from the category of
positive paths G+(A) by groupoid completion, i.e., adding formal inverses to every
morphism.

The arrangement A being often understood, we will sometimes just write G
for G(A).

Example 1.11 (Example 1.8 continued). We already described the objects and
morphisms of G+

1 := G+(A1) for the arrangement of one point in the real line. The
associated arrangement groupoid is obtained by formally adding an element a−1 ∈
Mor(B,A) such that a−1a = aa−1 = id in Mor(A,A), and an analogous element
b−1 ∈ Mor(A,B). Thus we have abb−1a−1 = id in Mor(A,A), which justifies the
notation (ab)−1 := b−1a−1. Then, in the arrangement groupoid G1 := G(A1), we
have
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MorG1(A,A) = {(ab)n | n ∈ Z} (i.e., the group Z)
MorG1(A,B) = {(ab)nx | n ∈ Z, x = a or b−1}

M

Example 1.12 (Example 1.9 continued). Let us now consider again the arrangemet
A2. As in the previous example, adding formal inverses to every ei,±1 in the positive
category G+(A2) that we described in Example 1.9, we can for instance see that,
in the arrangement groupoid G2 := G(A2), MorG2(C0, C0) is the free abelian group
on two generators eo,1e1,0 and eo,3e3,0. M

Remark 1.13. The arrangement groupoid was first defined by Deligne [29, (1.25)].
See also the work of Paris [61] for more on the construction. As a word of caution
it has to be pointed out that in [29] this object is defined under the assumption
that the arrangement is simplicial, thereby obtaining ‘by default’ some properties
that are not granted in the general case, such as the faithfulness of the natural
functor G+ → G that turns out to be a crucial property in view of asphericity of
the complement (see [29, 69, 60] and our Section 5.1). Note that our two examples
indeed enjoy this property.

Coverings of the arrangement groupoid. From the definition of G(A) and from
Remark 1.3 we see that indeed πG(A) = π1(M(A)). So the same subgroups char-
acterize the coverings of M(A) and the coverings of G(A).

If we apply Theorem 1.7 to the arrangement groupoid, we obtain coverings
ρ : Gρ → G. The objects of Gρ represent (right cosets of) paths on the arrangement
graph. Therefore we will freely switch between the interpretation of them as objects
(written with latin letters) or as morphisms in G (written with Greek letters).
Moreover, universal covering will be denoted by a hat on the corresponding object.
So ρ̂ for the universal covering morphism and Ĝ for Gρ̂.

Example 1.14. Consider the arrangement groupoid G1 of examples 1.8 and 1.11.
Choose A as the base point and let Ĝ1 be the groupoid given by

Ob(Ĝ1) := {vk}k∈Z, MorbG1
(vi, vj) := {µi,j},

ρ̂ : vi 7→
{

A i even
B i odd

µi,j 7→


(ab)q(i,j)ap(i,j) i even, i < j
(ab)q(i,j)+1b−p(i,j) i even, i > j
(ba)q(i,j)bp(i,j) i odd, i < j
(ba)q(i,j)+1a−p(i,j) i odd, i > j

Where we used the following notation:

p(i, j) =
{

0 i− j even
1 i− j odd q(i, j) :=

j − i− p(i, j)
2

.

This groupoid can also be obtained from obtained from the free category over
the directed infinite path by identifying every two morphisms with same beginning
and endpoint.
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It is easy now to see that this is a covering of the groupoid G1. Indeed,
µi,j ranges clearly over the morphisms exiting from vi, and conversely every such
morphism can be written as µi,j for an adequate choice of i and j. M

Example 1.15. The universal covering groupoid Ĝ2 := Ĝ(A2) of the arrangement
groupoid of Example 1.9 and 1.12 is the following

Ob(Ĝ2) = {vi,j | i, j ∈ Z}, MorbG2
(vi,j , vk,l) = {µi,j,k,l} (a singleton).

The covering map is defined on objects as

ρ̂(vi,j) := Cr(i,j)

where 0 ≤ r(i, j) ≤ 3 and r(i, j) ≡ p(i) − p(j) + 2p(i)p(j) (mod 4) with p(i) := 0
if i is even, p(i) := 1 if i is odd, for every i, j ∈ Z. To define ρ̂ on morphisms it is
useful to think of every vi,j as corresponding to the integer point (i, j) in the real
plane. Let us also think of every edge of the integer grid in R2 as being directed
following the increase of the coordinates value. So every node (i, j) is the source
of two edges: one oriented in x-direction, that we will label by er(i,j),r(i+1,j), and
one in y-direction, labeled er(i,j),r(i,j+1) (remember from Example 1.9 that also
the labeling ei,j is taken modulo 4).

Given any morphism µi,j,k,l, consider any path of minimal length in the
integer grid joining (i, j) to (k, l). Then ρ̂(µi,j,k,l) is the morphism of G2 represented
by the word read along this path, where labels of edges that are traversed against
their orientation should be taken with a negative exponent.

Stated otherwise, this groupoid can be constructed from the free category on
the graph obtained by directing “north” and “south” the edges of the 2-dimensional
integer grid, by identifying every two morphisms with same beginning and end-
point.

To see that this is indeed the universal covering groupoid of G2, we have to
look, for every pair i, j ∈ Z, at the stars of vi,j and Cr(i,j). We have clearly

StbG2
(vi,j) = {µi,j,k,l | k, l ∈ Z}, StG2(Cr(i,j)) =

3⋃
h=1

Mor(Cr(i,j), Cr(i,j)+h).

It is now clear that ρ̂ induces a bijection between these sets. For instance, any
µi,j,k,l is mapped to an element of Mor(Cr(i,j), Cr(i,j)+h) for h = r(k, l) − r(i, j).
Conversely, by comparing Example 1.12 we see that every morphism of G2 starting
at Cr(i,j) can be ‘unwrapped’ as a path on the integer grid starting at (i, j). The
given morphism is then the image of µi,j,k,l, where (k, l) is the endpoint of the
unwrapped path. M

2. Homotopy colimits for combinatorial applications

The theory of homotopy colimits of diagrams of spaces comes from homological
algebra and category theory. It was developed by Quillen, Bousfield, Kan and
others (see for example [63], [12]), and has now reached remarkable extension and
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depth. Some orientation (and a good introduction to the general subject) may be
found in the paper by Hollender and Vogt [45] and in the book by Goerss and
Jardine [42] and its bibliography.

The work of Reiner M. Vogt [78] leaves the complete generality of diagrams
over categories and focuses on what can be said if one makes more and more
assumptions on the target category (never going beyond the properties satisfied
by the category of topological spaces) and on the index category, requiring it to be
small and, as a further restriction, directed (for example, Vogt derives the explicit
form of Definition 2.2).

In our work we will take the latter and more combinatorial point of view,
which was adopted by Welker, Ziegler and Živaljević in [81], where a useful toolkit
for applications of homotopy colimits in discrete mathematics is developed. We will
recall the main definitions and some basic results; for a more complete account of
the theory we refer to [81] and the recent textbook by Kozlov [47, Chapter 15],
which provides a readable and self-contained introduction to the subject.

Definition 2.1. A diagram of spaces is a covariant functor D : I → Top from a
small index category to the category of topological spaces and continuous maps.

In our setting, I will always be given by some poset P. Indeed, a poset can
be thought of as a small category with at most one arrow between any two objects,
where an arrow from p ∈ P to q ∈ P actually exists if and only if p ≥ q in P. From
now on we shall only consider diagrams over posets. In order to simplify notation,
it is common to write Dp for the space D(p), and fp,q for the map D(p > q), if
the diagram is understood.

A morphism from a diagram D over the poset P to a diagram E over Q is
a pair (µ, (αp)p∈P), where µ : P → Q is a morphism of posets, and (αp)p∈P is a
family of continuous maps αp : D(p) → E (µ(p)) (indexed by elements of P) that
commute with the diagram maps.

Definition 2.2 (Compare (5.10) of [78]). Given a diagram of spaces D : P → Top,
the homotopy colimit of D is defined by

hocolimD :=
∐
p∈P

∆(P≤p)×Dp

/
∼

where the relation ∼ is given, for p > q, by identifying along the maps

∆(P≤q)×Dp ↪→ ∆(P≤p)×Dp, ∆(P≤q)×Dp
(id×fp,q)−→ ∆(P≤q)×Dq.

Example 2.3. Consider the poset P with three elements a, b, c ordered by a > b,
a > c and b, c incomparable, as in Figure 3.

Consider now the diagram D with Da := {X, Y }, two points, Db = [0, 1], the
unit interval, and Dc = {Z}, a single point. The map fa,b sends X and Y to the
extremes 0 and 1 in [0, 1], while fa,c maps everything to Z.

Let us consider the three terms of the disjoint union appearing in the defi-
nition of hocolimD . The order complexes ∆(P≤b) and ∆(P≤c) consist both of a



12 Emanuele Delucchi

a

b c

X Y

Z0 1

The poset P A diagram D over P hocolimD

Figure 3

single point. Thus, ∆(P≤b) × Db = b × [0, 1] and ∆(P≤c) × Dc is still a single
point. On the other hand, ∆(P≤a) consists of the segments b− a and a− c, joined
at a, so that the corresponding term in the distinct union consists of two disjoint
segments b × X − a × X − c × X and b × Y − a × Y − c × Y . The equivalence
relation identifies b×X with b× 0 ⊂ b× [0, 1], b× Y with b× 1 ⊂ b× [0, 1], and
both the points c ×X, c × Y with Z. The result is a subdivision of the circle S1

with 5 vertices, as can be seen in the Figure 3. M

As mentioned before, homotopy colimits were designed to enjoy many natu-
rality properties. The following functorial property is particularly useful

Lemma 2.4 (The Homotopy Lemma, see Proposition 3.7 of [81]). Consider a
morphism φ := (id, (αp)p∈P) : D → E between two diagrams over the same
poset P. If every αp is a (weak) homotopy equivalence, then the induced map
hocolimD → hocolimE is a (weak) homotopy equivalence.

That this is not granted with usual colimits is precisely the reason why one
has to introduce homotopy colimits.

Example 2.5. Consider the diagram D of the previous example. By taking the
colimit of it, the points 0, 1 and Z are identified, so that colimD is obtained by
identifying the endpoints of the unit interval, and thus is homotopy equivalent to a
circle. Now consider the diagram D ′ that is defined the same way as D except for

X Y

Z

Z

Z

The modified diagram D ′ hocolimD ′ colimD colimD ′

Figure 4

the fact that D′
b is now a single point as well, so that the contraction Db → D′

b is
clearly a homotopy equivalence. Now it easy to see that colimD ′ is a single point.
On the other hand hocolimD ′ is, as the reader will verify, still a subdivision of S1.
M
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However, the colimit and the homotopy colimit of a diagram of space do agree
in some cases, as stated in the following lemma.

Lemma 2.6 (The Projection Lemma, see Lemma 4.5 of [81]). Let D denote a dia-
gram of spaces on a poset P. If all diagram maps D(p > q) are closed cofibrations,
then the natural map hocolimD → colimD induces a homotopy equivalence.

A diagram of posets is a diagram D : P → Pos from a small index category
(that in our work will be given as above by a poset P) to the category Pos of
partially ordered sets and order-preserving maps.

In this situation, we also can define the poset limit PlimD of the diagram of
posets D . This is a poset with set of elements

PlimD :=
⋃
p∈P

{p} ×D(p),

and order relations defined by

(p1, q1) ≥ (p2, q2) :⇔
{

p1 ≥ p2 and
fp1,p2(q1) ≥ q2 in D(p2)

where fp1,p2 as usual stands for the diagram map associated to the order relation
p1 ≥ p2.

To such a diagram of posets one can associate a diagram of spaces ∆(D) :
P → Top with spaces ∆(D)p defined to be the order complex ∆(D(p)), and maps
∆(fp,q) : ∆(D(p)) → ∆(D(q)) induced by fp,q for all p ≥ q.

Lemma 2.7 (The Simplicial Model Lemma). Let D be a diagram of posets. Then
the homotopy colimit of ∆(D) is homotopy equivalent to the order complex of the
poset limit of D :

hocolim∆(D) ' ∆(PlimD).

Proof. See [1], note after Corollary 2.11. �

3. Salvetti-type diagram models

We now introduce the first type of diagram models. The result of this section is
summarized in Theorem 3.7, where it is proved that the homotopy colimit of the
diagrams that we are going to introduce indeed model every covering space of
the complement of a complexified arrangement. The fact that we will deal with
diagrams of posets will allow us to actually write the covering spaces as order
complexes of posets.

Definition 3.1. Given a cover of the arrangement groupoid ρ : Gρ → G(A), we
define a diagram of posets Dρ : F −→ Pos with

Dρ(F ) := {v ∈ Ob (Gρ) | ρ(v) < F},
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endowed with the trivial order relation defined by setting v1 ≤ v2 if and only if
v1 = v2, and maps being inclusions

fρ
F1,F2

:= Dρ(F1 > F2) : Dρ(F1) −→ Dρ(F2)
v 7−→ end (ρ(v) → ρ(v)F2)

〈v〉.

The Simplicial Model Lemma 2.7 allows to write hocolim∆(Dρ) as ∆(PlimDρ).
Because this will be the main object of our attention for this section, let us from
now set Wρ := ∆(PlimDρ). The simplicial complex Wρ has vertex set

{(F, v) ∈ F ×Ob(Gρ) | ρ(v) < F}

and the simplexes are chains with respect to the partial order

(F1, v1) ≥ (F2, v2) ⇔
{

1) F1 ≥ F2,
2) v2 = end(ρ(v1) → ρ(v1)F2)

〈v1〉.

Remark 3.2. A chain in PlimDρ is given by a chain φ in F and an object v of
the groupoid such that ρ(v) ≤ max φ in F . Everything else can be reconstructed
as above. Since all chains are of this form, we can encode each simplex of Wρ by
∆(φ, v).

Remark 3.3. If ρ is the identical cover, then W := Wid is exactly the simplicial
version of the Salvetti complex (the proof is carried out in [31, Proposition 4.1.2]).

Remark 3.4. For any covering ρ : Gρ → G, Wρ is the barycentric subdivision of a
CW-complex Wρ

CW having a d-cell [F, v] for every v ∈ Ob(Gρ) and every F ∈ F ,
F ≥ ρ(v), with codim(F ) = d. In fact,

[F, v] :=
⋃

max(φ)=F

∆(φ, v)

is the barycentric subdivision of a closed codim(F )-ball.
Vertices of this complex are of the form [ρ(v), v], and thus correspond bijec-

tively to elements of Ob(Gρ). We will therefore identify vertices of Wρ
CW with

objects of Gρ.
The cell [F, v] is attached to those vertices v′ that can be written as v′ =

end(ρ(v) → ρ(v)F ′)〈v〉 with F ′ < F .
Note also that if A is central and P is the maximal element of F , then any

[P, v] is the barycentric subdivision of the zonotope of the arrangement.

3.1. Covering maps

The functor ρ : Gρ → G naturally induces a morphism of diagrams λ : Dρ −→ D .
In turn, by functoriality the morphism λ induces a map between the homotopy
colimits, and thus a map of simplicial complexes

Λρ : Wρ −→ W.

In fact, Λρ is a simplicial extension of λ: the simplex ∆(φ, v) of Wρ is mapped to
∆(φ, ρ(v)) in W . The previous considerations can be followed step by step to see
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that a morphism η : Gρ1 → Gρ2 between two covers ρi : Gρi → G induces a map
Λη : Wρ1 → Wρ2 .

We now prove that groupoid coverings indeed induce topological coverings.
In the remainder of this section we shall slightly abuse notation and write Wρ for
the geometric realization of the simplicial complex ∆(PlimDρ) (for the definition of
the geometric realization of simplicial complexes see e.g. Spanier [73, Chapter 3]).
This shall not cause confusion because the topological properties of a simplicial
complex are indeed defined via its geometrical realization.

Proposition 3.5. Let A be a locally finite real arrangement. For every covering of
groupoids ρ : Gρ → G(A), the induced map Λρ : Wρ → W is a topological cover of
W .

Proof. First, one sees that the base space is connected and locally arcwise con-
nected because W is finite dimensional and locally finite.

Now take P ∈ W and Let X be an open neighborhood of P that does not
contain any vertex of W (except P if P happens to be a vertex). Let σ be the
smallest dimensional simplex of W containing P , and let U be the star of σ.
We have to show that each component of the preimage Λρ

−1(X ∩W ) is mapped
homeomorphically to X ∩ W . For this, it is enough to show that Λρ

−1(U) is a
disjoint union of copies of U , each of which is mapped identically to U by Λρ.

In view of Remark 3.2, σ = ∆(φ̃, C̃) for a chain φ̃ ⊂ F and a chamber
C̃ < max(φ̃). Defining F̃ := max(φ̃), we can write U and its preimage as

U =
⋃

φ ⊇ φ̃
C ∈ R(φ)

∆(φ,C), Λρ
−1(U) =

⋃
φ ⊇ φ̃

ρ(v) ∈ R(φ)

∆(φ, v),

where R(φ) is the set of all chambers C < max(φ) such that CF̃ = C̃.
For every vertex v′ ∈ ρ−1(C̃) we want to distinguish the subcomplex of U

spanned by all vertices that can be attained from v′ by the lift of a positive minimal
path. To every such v′ we thus associate the subcomplex

Wv′ :=
⋃

φ⊇φ̃
C∈R(φ)

∆(φ, v(C, v′))

where, for w ∈ Ob(Gρ) and C ∈ Ob(G), we denote by v(C,w) the object of Gρ

corresponding to the morphism w(C → ρ(w))−1 of G, i.e., “the object mapping to
C from which w can be reached by a positive minimal path”.

The proof now consists in the following three facts that amount to easy
calculations with the morphisms of the involved groupoids. We list them and refer
to [31, Proposition 4.3.2] for the complete argument.1

Fact 1: For any v1 6= v2 ∈ ρ−1(C̃), Wv1 ∩Wv2 = ∅.

1Actually, the proof of [31] uses only the properties of positive paths. This makes the argument
somewhat more involved, but makes sure that the arguments remain valid even restricting to the
so-called “positive complexes” that will become important later.
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Fact 2: ∐
ṽ∈ρ−1( eC)

Wṽ = Λρ
−1(U).

Fact 3: Fix ṽ ∈ ρ−1(C̃). Then Λρ : Wṽ → U is a homeomorphism. (Note that
it is enough to prove bijectivity on the vertex set).

�

3.2. The fundamental group

We want to compare the fundamental group of Wρ ' hocolim∆(Dρ) with the
object group of the corresponding groupoid. We begin by studying the structure
of the low dimensional skeleta of the CW-complex Wρ

CW of which Wρ is the
barycentric subdivision (see Remark 3.4).

1-skeleton. Between two vertices [ρ(v1), v1] and [ρ(v2), v2] there is an edge if and
only if the two corresponding chambers ρ(vi), ρ(vj) are separated by only one
face F . Thus, there must be representatives of vi and vj that differ only by an
edge that “crosses” F : either v2 represents the concatenation of v1 with the lift of
(ρ(v1) → ρ(v2)) at v1, or v1 represents the concatenation of a representative of v2

with the lift (ρ(v2) → ρ(v1))〈v2〉. In the first case, we have (F, v1) > (ρ(v1), v1) and
(F, v1) > (ρ(v2), v2) in PlimDρ, and thus we take the element (F, v1) of PlimDρ

to represent an edge [F, v1] directed from [ρ(v1), v1] to [ρ(v2), v2] in the 1-skeleton
of Wρ

CW . The second case is treated analogously and produces an edge [F, v2]
‘directed’ away from [ρ(v2), v2].

2-skeleton. Fix v ∈ Ob(Gρ) and F ∈ F with codim(F ) = 2 (w.l.o.g. ρ(v) < F ).
The vertices in the boundary ∂[F, v] are those of the form

[
C, end(ρ(v) → C)〈v〉

]
,

where C is any chamber adjacent to F . Let us label the vertices in circular order
as [ρ(vi), vi], i = 0, . . . , 2k − 1, and assume w.l.o.g. v = v0, C0 := ρ(v0).

Now consider vi 6= vj , and suppose that in ∂[F, v] an edge between [ρ(vi), vi]
and [ρ(vj), vj ] exists. This means that ρ(vi) is adjacent to ρ(vj), and that there
is an F1 with F > F1 > ρ(vi) and F > F1 > ρ(vj), such that this edge can be
written as [F1, ṽ]. To determine whether ṽ = vi or vj (which gives the ‘direction’
of the edge as above), recall that the fact that (F, v0) > (F1, ṽ) in PlimDρ implies
ρ(ṽ) = ρ(v0)F1 = (C0)F1 - so ṽ = vi if ρ(vi) = (C0)F1 , i.e., if ρ(vi) is on the same
side of F1 as C0.

Summarizing, in ∂[F, v] we have then one edge for each codimension 1 face
F1 incident to F , and this edge is oriented away from the vertex that projects to
the chamber on the same side as ρ(v) w.r.t. F1. We may also view ∂[F, v] as a
subgraph of Gρ: it consists of the lift at v of the two positive minimal paths from
ρ(v) to its opposite chamber with respect to F . It follows that the cover Gρ can be
obtained from the graph Gρ in the same way as G from G. In other words, [F, v]
provides a homotopy between two positive minimal paths in Gρ.
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It is not difficult now to compare the relations given by cells in Wρ
CW and

the relation defining Gρ and see that the following result holds. The proof is carried
out in detail in [31, Section 4.4.3]

Theorem 3.6 (Proposition 4.4.3 of [31]). Let A be a locally finite real arrange-
ment. For every covering ρ : Gρ → G(A) of the arrangement groupoid, we have an
isomorphism

πGρ ' π1(hocolim∆(Dρ))

Higher skeleta and MH-complexes. We have seen that the 2-cells are attached to
the 1-skeleton in the very same way as in the original construction of the Salvetti
complex from the arrangement graph. The reader is invited to check that also
every higher dimensional cell [F, v] is attached so that its 1-dimensional skeleton
consists of the lift at v of all positive minimal paths from ρ(v) to its opposite
chamber with respect to F .

This is exactly the structure of the Metrical Hemisphere complexes (or MH-
complexes) studied by Salvetti in [69], where the influence of the graph structure on
the homotopical properties of these complexes is carefully explained. In particular
the classical work of Gabriel and Zisman [40] is applied to give a very deep insight
into the link between the homotopy of the complexes and the category of paths on
the graph. The treatment starts from the full generality, and proceeds adding more
and more restrictions as the proofs require them. For the case in which the MH-
complex models the universal cover of a central arrangement (and thus agrees with
WCW

ρ̂ ), Salvetti recovers, and puts into this broader context, Deligne’s theorem
about asphericity of simplicial arrangements [29].

3.3. Classification of the covers

Theorem 3.7. For any topological cover r : X → Sal(A) of the Salvetti complex of a
locally finite real arrangement A, there exists a cover of the arrangement groupoid
ρ : Gρ → G(A) such that the homotopy colimit of the associated diagram of spaces
∆(Dρ) is isomorphic to X as a covering space of Sal(A).

Proof. Let ϕ : πG(A) → π1(hocolim∆(D)) be the isomorphism of Theorem 3.6.
Since hocolim∆(D) ' Sal(A), we can consider the preimage U := ϕ−1(r?(π1(X)))
of the fundamental group of X in πG(A).

Theorem 1.7 gives a cover ρ : Gρ → G(A) with ρ?(πGρ) = U . Moreover,
by Theorem 3.6 we have an isomorphism ϕρ : πGρ → π1(hocolim∆(Dρ)). These
isomorphisms come naturally from the inclusion ι of the graphs Gρ as 1-skeletons
of the CW-version of the homotopy colimits. Therefore the following diagrams
commute

Gρ
ι //

ρ

��

Wρ
CW

Λρ

��

πGρ
ϕρ //

ρ?

��

π1(Wρ)

(Λρ)?

��
G

ι // WCW πG
ϕ // π1(W )



18 Emanuele Delucchi

and r?(π1(X)) = ϕρ?(πGρ) = (Λρ)?ϕρ(π1(Wρ)) ∼= (Λρ)?(π1(Wρ)). Hence, the
cover Λρ : Wρ → Sal(A) is isomorphic to r : X → Sal(A). �

Corollary 3.8. Any cover ρ : X → Sal(A) of the Salvetti complex can be written
as the order complex of a poset, namely PlimDρ. The poset PlimDid is naturally
isomorphic to the poset S(A) of cells of the Salvetti complex.

Proof. Apply the Simplicial Model Lemma 2.7. �

The following corollary generalizes [60, Theorem 3.7] (see also the definitions
on [60, p. 164]) to affine arrangements.

Corollary 3.9. Let ρ̂ : Ĝ → G(A) denote the universal cover of G(A). Then Wρ̂ =
∆(PlimDρ̂) is the universal cover of Sal(A).

Proof. We prove universality. Take any cover r : X → Sal(A); we have to show
that there is a morphism of covers m : Wρ̂ → X. By the theorem, we know that
there is a cover ρ : Gρ → G(A) with Wρ

∼= X as a cover. Universality of Ĝ implies
the existence of a cover µ : Ĝ → Gρ, and this induces a morphism of diagrams
λµ : Dρ̂ → Dρ. By functoriality, we have Λµ : Wρ̂ → Wρ, which gives the required
morphism, as in the following diagram.

Ĝ

µ
!!D

DD
DD

DD
DD

ρ̂

��

//________ Dρ̂

λµ   A
AA

AA
AA

λρ̂

��

//_______ Wρ̂

Λµ

''N
NNNNNNNNNNNN

Λρ̂

��

m

00
Gρ

ρ

��		
		

		
		

		
		

		

//_______ Dρ

λρ

����
��
��
��
��
��
��

//___________ Wρ

Λρ

~~||
||

||
||

||
||

||
||

|
≃

// X

r

yyrrrrrrrrrrrrrrrrrrrrrrr

G(A) //_______ D //________ W Sal(A) ≃M(A).

�

Example 3.10. Consider the arrangement given by one point P ∈ R (i.e., the
arrangement A1 of examples 1.8, 1.11, 1.14). The space R is divided by P in two
chambers A and B. It is easy to write down the face poset F1 := F(A1) and the
arrangement graph G(A1) as in Figure 5.

A1 and G(A1) The poset of faces F(A1)

Figure 5

The complexification of A1 is the arrangement given by a point in the com-
plex plane. The complement M(A1) is then homotopy equivalent to S1, hence
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its universal cover is R. We will now see how the diagram models come to this
conclusions.

First consider the diagram D on the poset F1. We have D(A) = {A},
D(B) = {B}, D(P ) = {A,B}. The diagram maps are in this case trivial, but
let us explain where they come from:

D(P > A) : A 7→ AA = A
B 7→ BA = A

D(P > B) : A 7→ AB = B
B 7→ BB = B

A

P

��
��

��
��

��
�

B

???????????

A07162534

A07162534

B07162534

B07162534

Note that the associated diagram of spaces ∆(D) is exactly the diagram of
Example 3, where it is shown that hocolim∆(D) ' S1.

We now have to look at the universal cover of G(A1). As we already pointed
out, since Sal(A) has no 2-cells, the identification on Free(G(A1)) is empty.
Indeed, G(A1) is described in Example 1.11, and in Example 1.14 we computed
its universal covering groupoid Ĝ1. Here we will slightly change notation and write
Ai := v2i and Bi := v2i+1, so that ρ̂ : Ĝ1 → G(A1) is defined by ρ̂(Ai) = A,
ρ̂(Bi) = B for all i and Gρ̂(A1) is an infinite path . . . B−1 → A0 → B0 → A1 →
B1 . . .
Writing down the diagram Dρ̂ we have to keep in mind that the poset associated
to an element F ∈ F1 has as many incomparable elements as there are objects
in Ĝ that project to a chamber adjacent to F . So we have Dρ̂(A) = {Ai| i ∈ Z},
Dρ̂(B) = {Bi| i ∈ Z}, Dρ̂(P ) = Dρ̂(A)∪Dρ̂(B). For the maps one has to take care
of how paths are lifted. Let us work out some special case and write down the
diagram in the same fashion as above:

Dρ̂(P > B) :
Ai 7→ end((A → B)〈Ai〉)

= Bi

Bi 7→ end((B → B)〈Bi〉)
= Bi

Dρ̂(P > A) :
Ai 7→ end((A → A)〈Ai〉)

= Ai

Bi 7→ end((B → A)〈Bi〉)
= Ai+1

A

P

��
��

��
��

��
��

��
��

B

????????????????

A2
8?9>:=;<

B1
8?9>:=;<

B1
8?9>:=;<

A1
8?9>:=;<

A1
8?9>:=;<

B0
8?9>:=;<

B0
8?9>:=;<

A0
8?9>:=;<

.

.

.

A
−1

A2

.

.

.

B
−1

.

.

.

B2

.

.

.

.

.

.

B
−1

B2

.

.

.

.

.

.

.

.

.

A0
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By Lemma 2.7, we now only have to write down the poset PlimDρ̂. The order
relation is such that for Fi ∈ F1 and vi ∈ Ob(Ĝ1) we have (F1, v1) ≥ (F2, v2) if
and only if F1 ≥ F2 and v2 = end(ρ(v1) → ρ(v1)F2)

〈v1〉.
In our case, this means that the dotted lines in the above picture are yet a

piece of the Hasse diagram of PlimDρ̂, which we can redraw in a more readable
way as

(P,B−1)

�
�

�
�

(A,A0)

??????

(P,A0)

��
��

��

(B,B0)

??????

(P,B0)

��
��

��

(A,A1)

??????

(P,A1)

��
��

��

(B,B1)

?????? �
�

�
�

It is now clear that hocolimDρ
∼= ∆(PlimDρ̂) ' R, as required. M

3.4. Reflection arrangements and Charney-Davis models

Suppose that A is the set of reflecting hyperplanes for a finite real refection group
W ; then W acts onM(A). The fundamental group π1(M(A)/W ) is the associated
Artin group, as was proved by Brieskorn [16], and M(A) is aspherical (i.e., its
homotopy groups are trivial in degree bigger or equal 2, as proved in [29]). Among
other things, this means that the Salvetti complex Sal(A), and its “quotiented”
version presented in [68] are finite K(π, 1)s for the Artin groups of finite type.

Ruth Charney and Michael W. Davis showed in [23] that this situation gener-
alizes to many infinite Coxeter groups. The argument builds on previous work [22]
of the same authors, who introduced a “modified Deligne complex” Φ ([22, (1.5)])
in order to describe, via the theory of complexes of groups, the universal cover
of a space M associated to any linear reflection group W [22, see Theorem 1.5.1,
Corollary 3.2.2, Proposition 3.2.3]. The space M can be obtained as the quotient
(by the action of W ) of the complement of the “reflection hyperplanes” associated
to the action of W on a certain space (see [22, Section 2]). Also, M is conjecturally
a K(π, 1) space for the Artin group associated with W ; in [22] this conjecture is
proved true for two classes of reflection groups (“2-dimensional Artin groups” and
“Artin groups of FC type”), by showing that Φ is contractible. In both cases this
is achieved by proving that a suitable piecewise euclidean metric on Φ is CAT(0)
[22, Section 4]. Then, in [23] the same authors describe a finite complex that is
homotopy equivalent to M , thus providing finite K(π, 1) complexes for the Artin
groups for which the above conjecture holds, and therefore making the situation
for finite reflection groups part of a more general picture. The finite complex is
called Salvetti complex in [23, (1.2)].

One of the question raised by Charney and Davis’ work in our context is
whether this similarity can lead to any generalization of their technique - i.e.,
whether techniques of CAT(0) geometry used on Φ can be applied to the diagram
models in the general case.

The first candidates for such a program could be the affine reflection ar-
rangements. In this context, and building on the results of [22, 23], Charney and
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Peifer proved the K(π, 1) conjecture for the affine braid arrangements by realizing
[24, Section 3] the universal cover of these arrangements as the nerve of a certain
covering by contractible subcomplexes of the “Bestvina Normal Form Complex”
for the Artin group of (finite) type Bn (see [5, 25]) that we will encounter later
in this survey (see Definition 5.12). This complex is contractible by either [29]
(i.e., because it models the universal cover of the Bn arrangement) or [25] (i.e.,
using the Garside structure of the associated Artin group). At present, the K(π, 1)
conjecture for affine real reflection arrangements is solved for the arrangements of
type Ãn and C̃n (first by Okonek [54], type Ãn also by Charney and Peifer [24])
as well as for type B̃n (as proved by Callegaro, Moroni and Salvetti [21]).

4. Paris’ topological models

We explain a construction of topological models for covers of complexified ar-
rangements that is due to Luis Paris [59]. In this construction, the information
on the fundamental group is encoded in so-called oriented systems rather than
in groupoids, as is the case in our treatment. In later work [60], Paris himself
gave a combinatorial stratification of his models for the universal cover of a linear
arrangement.

We will start by giving the definition of Paris’ oriented systems and outlining
the parallels with the theory of groupoids. Then we will explain the construction
of the topological models and conclude by giving a combinatorial stratification of
them in the most general case, providing an explicit homotopy equivalence with
the Salvetti-type diagram models that works for any cover of all complexified
arrangements.

4.1. Oriented systems and their covers

Paris introduced the notion of oriented system, that we briefly recall.

Definition 4.1. An oriented system is a pair (Γ,∼) where Γ is an oriented graph
and ∼ is an identification between paths of Γ such that
(1) α ∼ β implies start(α) = start(β) and end(α) = end(β),
(2) αα−1 ∼ start(α) for every α,
(3) α ∼ β implies α−1 ∼ β−1,
(4) α ∼ β implies γ1αγ2 ∼ γ1βγ2 for any γ1, γ2 with

end(γ1) = start(α) and start(γ2) = end(α),
where the ‘inverse’ of an oriented path α is obtained by going along α in the reverse
direction.

Given a real arrangement of hyperplanes A, the natural way to associate to it
an oriented system (Γ(A),∼) is of course to take Γ(A) = G(A), the arrangement
graph, and identify two paths if they are both positive minimal and they start at
the same point v and end at the same point w.

Forgetting orientation of edges, one can view Γ as a 1-complex, and therefore
consider its fundamental group π1(Γ). The conditions that were required in the
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definition of the equivalence relation on paths ensure that ∼ induces an equivalence
relation on π1(Γ); therefore we can consider the quotient π(Γ,∼) := π1(Γ)/ ∼,
which is called by Paris the fundamental group of the oriented system (Γ,∼).

For oriented systems, Paris [59] introduced the following concept of a cover:

Definition 4.2. Given two oriented systems (Θ,∼Θ) and (Ψ,∼Ψ), a morphism of
oriented graphs ρ : Θ → Ψ is said to be a cover of (Ψ,∼Ψ) if
(1) for every vertex v of Θ and every path α in Ψ with start(α) = ρ(v)

there is a unique path α̂v in Θ with ρ(α̂v) = α and start(α̂v) = v.
This path is called the lift of α at v.

(2) for any two paths α, β in Ψ with start(α) = start(β) = ρ(v),
if α ∼ β then α̂v ∼ β̂v.

At this point, the similarity with the theory of groupoids as sketched in the
prologue is clear, and we summarize it.

Corollary 4.3. Let G(A) denote the arrangement groupoid. We have immediately
Ob(G(A)) = V (Γ(A)), the set of vertices of Γ. Any path γ on Γ identifies an
equivalence class of morphisms [γ] of G; moreover,

γ1 ∼ γ2 in (Γ,∼) if and only if [γ1] = [γ2] ∈ MorG(start(γ1), end(γ2)).

In particular, observe that π(Γ(A),∼) ∼= πG(A).
Furthermore, the requirement on the star St(v) in the definition of covering of

a groupoid translates naturally into condition (1) of Definition 4.2, where condition
(2) takes account of the quotient to which we pass in defining the arrangement
groupoid. Therefore, for any choice of a subgroup of π(Γ(A),∼) ' πG(A) we obtain
a covering (Θ,∼) (by Theorem 4.4) and a covering Gρ (by Theorem 1.7) that may
be compared as follows:

V (Θ) = Ob(Gρ)
(v, w) ∈ V (Θ) ⇔ there is α ∈ MorGρ(v, w) lifting an edge of G(A).

The following result is now evident.

Theorem 4.4 ([59]). Consider an oriented system (Ψ,∼). For each subgroup H
of π(Ψ,∼) there exists a cover of oriented systems ρ : (Θ,∼) → (Ψ,∼) with
ρ?(π(Θ,∼)) = H.

4.2. Topological covers associated to oriented systems

We fix from now on a cover of oriented systems ρ : (Θ,∼) → (Γ,∼), the latter
being the oriented system naturally associated to the arrangement graph, and
describe the construction developed by Paris in [59] that associates a topological
space to (Θ,∼).

Remark 4.5. In this Section the faces F have to be considered as convex, relatively
open subsets of Rd, and we will write |F | for the affine span of any face F . Also,
given a chamber C and a face F , we will denote by C|F | the unique chamber of the
arrangement A|F | := supp(F ) containing C. Thus, C ⊆ C|F | for every chamber C
and every face F .
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The key objects out of which the space is built are pieces of the form

M(C) :=
⋃

F∈F
(F + iC|F |) ⊂ Rd ⊕ iRd = Cd.

For every vertex v of Θ we define N(v) := M(ρ(v)), and the topological space
associated to (Θ,∼) is given by

NΘ :=
∐

v∈V (Θ)

N(v)
/
≈ .

The relation ≈ is defined pointwise by identifying two points z ∈ N(v),
z′ ∈ N(v′) whenever (v, v′) is an edge of Θ and they correspond to a unique point
z = z′ in M(ρ(v)) ∩M(ρ(v′)) which real part lies on the same side as ρ(v′) with
respect to the hyperplane separating ρ(v) from ρ(v′).

Theorem 4.6 ([59]). Given any cover ρ : (Θ,∼) → (Γ,∼) of the oriented system
associated to a linear arrangement A, the space NΘ with the map induced by ρ is
a topological cover of M(A) with characteristic group π(Θ,∼).

Paris defines for any two vertices v, w of Θ a topological space Z(v, w) as
the interior of

⋃
ρ(u), where the overline denotes topological closure in Rd and

the union is over all u ∈ V (Θ) that are reachable from both v and w by lifts of
positive minimal paths of Γ. If (v, w) is an edge of Θ, then Z(v, w) contains the
real part of the set that is identified between N(v) and N(w). For general v and
w, Paris shows the following fact that we state for later reference.

Lemma 4.7 (see Lemma 3.5 of [59]). If N(v) ∩N(w) 6= ∅ in NΘ, then Z(v, w) is
not empty. Indeed,

N(v) ∩N(w) = M(ρ(v)) ∩M(ρ(w)) ∩ (Z(v, w) + iV ).

4.3. Combinatorial stratifications and diagram models

We now draw the link between Paris’ construction and the diagram models. For
this, we describe a stratification of NΘ by contractible subsets with contractible in-
tersections, and show that its nerve is isomorphic to PlimDρ. By the Nerve Lemma
(see [7, 10.6(ii)] or [47, Theorem 15.21]) this proves directly hocolim∆(Dρ) ' NΘ.

Remark 4.8. In comparing the two constructions one has to bear in mind that a
vertex of an oriented system corresponds to an object of the corresponding covering
groupoid, which is an equivalence class of paths in the arrangement graph. We will
offer adequate explanations unless the context already makes clear which point of
view is taken on the objects denoted by v, w, . . .

Let us define, for any F ∈ F and any C ∈ T , a set

MF
C :=

⋃
F ′≤F

F ′ + iC|F ′|.

Accordingly, for any v ∈ V (Θ) let NF
v := MF

ρ(v) ⊂ N(v).
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It is then clear that

M(C) =
⋃

F∈F
MF

C , N(v) =
⋃

F∈F
NF

v .

Lemma 4.9. For any F ∈ F(A) and any C ∈ T (A), the space MF
C is contractible.

This implies contractibility of NF
v for all v ∈ V (Θ), F ∈ F .

Proof. Fix F ∈ F , C ∈ T and z ∈ F +iC|F |. We show that the segment connecting
z to any x ∈ MF

C lies fully in MF
C .

If x ∈ F +iC|F | the claim is trivial by convexity. Choose therefore F ′ ≤ F ∈ F
such that x ∈ F ′ + iC|F ′|, and consider the segment

γ(t) := tz + (1− t)x, 0 ≤ t ≤ 1.

It is clear that <(γ(t)) ∈ F ′ for 0 ≤ t < 1, and by assumption <(γ(1)) ∈ F .
For the imaginary part, note that =(x) ∈ C|F ′| and =(z) ∈ C|F | ⊂ C|F ′| (see

Remark 4.5), so =(γ(t)) is a straight line between two points of the convex set
iC|F ′|. �

Lemma 4.10. Given v1, v2 ∈ V (Θ) and F1, F2 ∈ F , NF1
v1

⊂ NF2
v2

if and only if
(F1, v1) < (F2, v2) in PlimDρ.

Proof. For the “only if ”-part, suppose that NF1
v1

⊂ NF2
v2

. Then clearly NF1
v1

⊂
N(v1) ∩ N(v2) and by Lemma 4.7 we have that NF1

v1
, which by definition is a

copy of MF1
ρ(v1)

, is indeed contained in Z(v1, v2). In particular, we thus have that
ρ(v1) ⊂ Z(v1, v2), and by the very definition of Z(v1, v2), in the oriented system
v1 can be reached from v2 by the lift of a minimal path (ρ(v2) → ρ(v1)). In the
corresponding covering groupoid every object is an equivalence class of paths, and
these objects are the vertices of Gρ. Thus we may state the above conclusion as a
composition of (equivalence classes of) paths as:

(i) v1 = v2(ρ(v2) → ρ(v1))〈v2〉

(recall that the vi correspond to homotopy classes of paths, and as such may be
concatenated with other paths). On the other hand, NF1

v1
⊂ NF2

v2
implies MF1

ρ(v1)
⊂

MF2
ρ(v2)

, which is clearly equivalent to:

(ii) F1 < F2 and ρ(v1) = ρ(v2)F1 .

The sentences (i) and (ii) above constitute the definition of the order relation
(F1, v1) < (F2, v2) in PlimDρ.

For the “if ”-part, suppose (F1, v1) < (F2, v2) in PlimDρ, that means

(a) F1 < F2, (b) ρ(v1) = ρ(v2)F1 , (c) v1 = v2(ρ(v2) → ρ(v1))〈v2〉.



Combinatorics of arrangement covers 25

As above, (c) means that N(v1) and N(v2) intersect, and Lemma 4.7 describes this
intersection. Since the (a) and (b) above ensure that MF1

ρ(v1)
⊆ MF2

ρ(v2)
, to prove

the inclusion NF1
v1

⊂ NF2
v2

we only have to show that Z(v1, v2) contains all faces
F < F1.

The latter assertion means that no chamber C such that C < F (i.e., F ⊂ C)
is separated from ρ(v1) by any hyperplane that separates ρ(v1) from ρ(v2). But
C < F implies C < F1, and so C can be separated from ρ(v1) only by hyperplanes
H ∈ supp(F1) and, by construction, the set of hyperplanes separating ρ(v1) from
ρ(v2) is contained in supp(F2) \ supp(F1). This concludes the proof. �

We end by proving the announced proposition.

Proposition 4.11. Let Θ → Γ(A) be a cover of oriented systems, ρ : Gρ → G the
associated cover of the arrangement groupoid, and Dρ the corresponding diagram.
Then

NΘ =
⋃

F∈ max(F)
v∈Ob(Gρ)

NF
v

is a covering by open, contractible subsets with empty or contractible intersections.
Moreover, the nerve of this covering is the poset PlimDρ.

Proof. After the above preparations, we only have to show that NF1
v1
∩ NF2

v2
is

not empty if and only if it equals NF1∧F2
ṽ , where ṽ represents the path obtained

by concatenating any representative of v1 with the lift (ρ(v1) → ρ(v1)F1∧F2)
〈v1〉

(where the wedge is taken in F).
For this, recall Lemma 4.7. It implies that if z ∈ N(v1) ∩ N(v2) and, say,

<(z) ∈ F , then all pieces of N(v1) of the form F ′ + iC ′
F with F ′ < F are also in

the intersection. Therefore, if an intersection is nonempty, it contains some NF ′

v′ .
Now, by Lemma 4.10, this is equivalent with (F ′, v′) < (Fi, vi) for i = 1, 2.

Again by Lemma 4.10, it follows that NF1∧F2
ṽ ⊂ NF1

v1
∩NF2

v2
because in PlimDρ

we have (F1 ∧ F2, ṽ) = (F1, v1) ∧ (F2, v2). The reverse inclusion follows because
with some z′ ∈ NF1

v1
∩NF2

v2
\NF1∧F2

ṽ we would have a whole NF ′

v′ included in both
sets, but for which (F ′, v′) 6< (F1, v1) ∧ (F2, v2), contradicting Lemma 4.10. �

Corollary 4.12. Given any cover ρ : (Θ,∼) → (Γ(A),∼), the spaces NΘ and Wρ

are homotopy equivalent and isomorphic as covers of M(A).

Proof. Homotopy equivalence is obtained from Proposition 4.11 via the Nerve
Lemma ([7, 10.6(ii)] or [47, Theorem 15.21]). By naturality we obtain the isomor-
phism as covering spaces. �

5. Garside-type diagram models

The introduction of diagrams of spaces into the picture allows us to take the next
step, modifying the diagram spaces so to get a new type of combinatorial models,
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with different features. The name indicates that this construction is inspired by
the theory of Garside groups, in a way that will be made precise in Section 5.2.

Definition 5.1. Let A be a linear arrangement of real hyperplanes. Given a covering
Gρ → G(A) of the arrangement groupoid let Uρ be the flag complex on the vertex
set Ob(Gρ) such that a set {v0, v1, . . . , vd} ⊂ Ob(Gρ) is a simplex if and only if,
for all i < j and given representatives γi of vi, γj of vj , the path γjγ

−1
i is positive

minimal.

Remark 5.2. In the previous definition, as in what follows, we need to consider
specific representatives of the classes of paths that are given by objects of the
groupoids. As agreed in Section 1.4, we will write v, w, . . . for the objects of the
groupoids (i.e., classes of paths) and use Greek lowercase letters for specific paths
in the arrangement graph.

For the sake of this survey it will be enough to give a slightly different ver-
sion of the diagram models than the original one in [31], also in order to reduce
to a minimum the required new definitions. Also, note that throughout the whole
section A denotes a linear arrangement, even if the construction can easily be mod-
ified to hold also for affine arrangements. For instance, in the case of affine braid
arrangements the construction would specialize to the complex used by Charney
and Peifer in [24] (see the discussion in Section 3.4). Indeed part of the motiva-
tion in introducing the Garside-type models was the strive toward a (still missing)
possible generalization of the methods of [24].

Definition 5.3. Let a cover Gρ of the arrangement groupoid be given, and fix a
face F ∈ F . For every path γ representing a v ∈ Ob(Gρ) such that end(γ) < F we
consider the set

{γ(C → end(γ))−1 | C ∈ T (A), S(C, end(γ)) ∩ supp(F ) = ∅} ⊂ Ob(Gρ).

There is a natural partial order on this set that is induced by 4end(γ) (for the
definition see Section 1); we call this poset QF

ρ (γ).
Moreover, if C is a chamber, then supp(C) = ∅ and thus every QC

ρ (γ) is
naturally isomorphic to the poset TC(A). To emphasize this structure we will
write Tρ(γ) for QC

ρ (γ).

Definition 5.4. For any covering of groupoids ρ : Gρ → G(A) we define a diagram
of posets Gρ : F → Pos by setting

Gρ(F ) :=
∐

end(v)<F

QF
ρ ,

Gρ(F1 > F2) : Gρ(F1) ↪→ Gρ(F2)
γ′ ∈ QF1(γ) 7→ γ′ ∈ QF2(γα)

where α is defined as the positive minimal path from end(γ) to end(γ)F2 . The
right side is well defined because if γ′ = γ(C ′ → C)−1, where C = end(γ) and
C ′ = end(γ′), then γ′ = (γα)((C ′ → C)α)−1.
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An easy check shows that the maps are well-defined. Let us go on to the
following theorem, that is now easy to prove in the context of diagram of spaces.

Theorem 5.5. For every cover Gρ → G we have a homotopy equivalence

hocolim∆(Dρ) ' hocolim∆(Gρ).

Proof. It is evident that the minimal elements of QF
ρ (γ) are the v such that ρ(v) <

F in F . Every one of these vertices belongs to a different connected component
of ∆(QF

ρ (γ)) and is a cone point for that component, so that clearly ∆(Gρ(F ))
is homotopy equivalent to ∆(Dρ(F )). It is easy to check that the map that sends
every γ ∈ QF

ρ ⊂ Gρ(F ) to v := minQF
ρ ∈ Dρ(F ) induces a morphism of diagrams.

We then conclude by an application of the Homotopy Lemma 2.4. �

Now we can prove that the flag complexes defined at the beginning of this
section indeed model the arrangement covers.

Theorem 5.6. For every cover Gρ → G, we have

Uρ 'Mρ

Proof. After Theorem 5.5 it suffices to show that hocolim∆(Gρ) ' Uρ. For this,
note that for any morphism g = Gρ(F1 > F2), the image g(∆(Gρ(F1))) is a simpli-
cial subcomplex of ∆(Gρ(F2)) (compare Definition 5.4).
In particular, (∆(Gρ(F2)),∆(Gρ(F1))) is a NDR-pair and g is a closed cofibration.

So we are in the situation to apply the Projection Lemma 2.6, obtaining
a homotopy equivalence hocolim∆(Gρ) ' colim∆(Gρ). We are left with showing
that the right hand side is the complex Uρ. Indeed, every simplex is contained in
(maybe more than) a ∆(Tρ(γ)). The maps of the diagram are inclusions, so

colim∆(Gρ) =
( ∐

γ∈Ob(Gρ)

∆(Tρ(γ))
)/

∼

and we only have to check the identifications.
Of course ω1 ∈ Tρ(γ1) and ω2 ∈ Tρ(γ2) are identified if and only if ω1 = ω2

in Gρ. Given a chain σ ∈ ∆(Tρ(γ1)) ∩ ∆(Tρ(γ2)) (which is then automatically of
length < n), let us write C1 := end(γ1), C2 := end(γ2), γ′ := min σ, A := end(γ′),
B := end(max(σ)), as in Figure 6.

The case C1 = A = C2 is trivial, and if both C1 6= A and C2 6= B one may
consider the poset Tρ(γ′) that contains the chain σ. Then it is enough to show the
claim for the case C1 = A, C2 6= A. In this case we may suppose that γ1 = γ2α
with α = (A → C2) (all equalities of paths here are in fact equivalences in Gρ). We
will argue by induction on the length of α, the case where `(α) = 0 being trivial.
If `(α) > 0, let F denote the first face that is crossed by α and let ε = (C2 → C)
denote the edge of α crossing F , so that α = ετ for a positive minimal path τ .

Then clearly F > C2, and by definition the hyperplane H supporting F does
not separate A from B. Thus, we have that

σ ⊂ QF
ρ (γ2ετ),
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20 C21 A B� PC2(A)PC1(A)
C1

Figure 6. Figure for the proof of Theorem 5.5.

and σ is mapped identically to σ′ ⊂ QC
ρ (γ2ε), the latter being equal to Tρ(γ′2),

where γ′2 = γ2ε = γ1(C → A)−1. Therefore σ is identified with σ′ in the colimit,
and it remains to show that σ′ ⊂ Tρ(γ′2) is identified with σ ⊂ Tρ(γ1): but this
follows now by induction, since `((C → A)) = `(α)− 1. �

Example 5.7. Consider the arrangement A2 of Example 1.4. The universal cover-
ing groupoid is computed in Example 1.15, and keeping those notations we may
describe the complex Uρ̂ by identifying every vertex vi,j with the corresponding
point (i, j) of the Cartesian plane, agreeing that v0,0 projects to the base chamber
we choose for the construction. Then it is clear that the morphisms that actually
give edges of Uρ̂ are the µi,j,k,l of the form µi,j,i+1,j , µi,j,i,j+1, µi,j,i+1,j+1. The
2-simplices are of the form {vi,j , vi,j+1, vi+1,j+1} or {vi,j , vi+,j , vi+1,j+1}. Figure 7
shows a piece of this complex which is, in fact, a triangulation of the real plane. M

5.1. The ‘Strong Lattice Property’

A linear real arrangement is called simplicial if its chambers are cones over sim-
plexes. Brieskorn’s conjecture was settled by Deligne, who showed that the com-
plexification of every simplicial arrangement is K(π, 1).

As an application of our construction, let us recast the proof of this result in
view of the Garside-type diagram models.

Deligne’s strategy has been to construct a contractible simplicial complex
and then to show that under some technical assumptions this complex models the
universal cover of the arrangement’s complement. See also [61] for a reformulation
of the argument. The first part of Deligne’s proof establishes a crucial property
of positive paths of simplicial arrangements. This property was given the name
“property D” by Paris, who proved that it is indeed equivalent to the arrangement
being simplicial (see [62] and, for an alternative proof, [31, Chapter 6]).
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Figure 7. A part of the Garside-type universal cover complex
for the arrangement A2 of Example 5.7, with the vertex v0,0 rep-
resented by the thicker dot. The shaded part is a piece of the
positive complex, namely Û3.

Lemma 5.8 (“Property D”, see [60]). Let A be a simplicial arrangement. For every
v ∈ Ob(Ĝ) representing a positive path on the arrangement graph, the following
holds: there is a unique chamber Cv such that β(C → C0) represents v for a
positive path β if and only if C 4C0 Cv.

Once this is established, one can look at the part of the Garside-type universal
cover complex Uρ̂ that is generated by the positive paths of length at most n - let
us call it Ûn (see Figure 7). It is easy to see that Lemma 5.8 implies:

If the arrangement A is simplicial, then for every vertex v of Ûn \ Ûn−1,
(∗) v is the apex of a cone over a contractible subcomplex of Ûn−1.

Thus, it is clear that Ûn−1 is homotopy equivalent to Ûn by simply succes-
sively “pushing in” the cones. By induction, we obtain that the subcomplex of
U generated by the positive paths is contractible. Moreover, one can show [60,
Lemma 4.16] (but see also [29, 69]) that contractibility of the positive complex
implies contractibility of the whole universal cover, and thus asphericity of the
arrangement.

Question I. The natural (and open) question is to find a condition on the positive
paths of a real arrangement that is weaker than property D but keeps the validity
of statement (∗) above.

Remark 5.9 (On the Lattice Property). It is a well known fact that an arrangement
is simplicial if and only if its poset of regions is a lattice for every choice of a base
region (see [9] - let us call this the “Strong Lattice Property”). In an attempt to
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generalize Deligne’s argument, one might consider a weakening of this condition,
i.e., requiring that the poset of regions be a lattice for at least one choice of base
chamber (“Weak Lattice Condition”). Indeed, this condition is satisfied by all
simplicial and all supersolvable arrangements, i.e., the two major known classes
of aspherical arrangements, and by all hyperfactored arrangements (which are
conjecturally K(π, 1); see [48]). However, an example exists that satisfies the Weak
Lattice Condition but is not K(π, 1): it is the arrangement A2 of [36].

The Weak Lattice Property has however nice consequences with respect of
the structure of the Garside type models, e.g. leading to a coarsening of the strat-
ification by order complexes of the TC ’s - see [31, Chapter 7] for further details.

5.2. Garside groups and Bestvina’s complex

The name “Garside-type” comes from the analogy with the following construction
that can be carried out when A is the reflection arrangement associated to a finite
reflection group W . In this situation, W acts on M(A) and the fundamental group
of M(A)/W is the associated Artin group. Among other nice properties, one has
that Artin groups are Garside groups (see e.g. [41, 51, 28]).

Definition 5.10. A group G is a Garside group if there is a bounded, graded lattice
L of finite height, with a labeling of the edges of its Hasse diagram in some alphabet
S, so that G is the group of fractions of the monoid generated by S with relations
that identify any two words that can be read along saturated chains of L with
same begin- and endpoint. The labeling must satisfy some very important technical
conditions, to ensure that the monoid actually embeds into its group of fractions.
For every pair x < y of the lattice L, let λ(x, y) denote the set of all words in S that
can be read along any saturated chain starting at x and ending at y. All of these
words are equal, and thus λ(x, y) represents a single element, in the generated
monoid. Then the conditions are that the labeling be

• Balanced: The sets {λ(0̂, x) | x ∈ L} and {λ(x, 1̂) | x ∈ L} are equal.
• Group-like: For every two triples x ≤ y ≤ z, x′ ≤ y′ ≤ z′ of elements L, if

two of the corresponding pairs of labelings are equal, so is the third.

b

b

b

a

a

a

Figure 8.
{λ(0̂, x) | x ∈ L} = {a, b, ab, ba, aba, bab} = {λ(x, 1̂) | x ∈ L}
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Example 5.11. An instructive example is one of the Garside structures that lead
to the Artin group of type A2. In this case (as for every finite-type Artin group)
the poset is the weak order of the corresponding Coxeter Group, with the natural
labeling by simple roots. We depict the poset with an equivalent labeling in Figure
8. For details on the weak order and the labeling see [8]. M

We then introduce the following simplicial (flag) complex that was defined
by Brady for braid groups [13], by Brady and Watt [14] and Bestvina [5] for finite
type Artin groups, and was extended by Charney, Meier and Whittlesey to the
more general context of Garside groups [25].

Definition 5.12 (Compare [25] and Section 2.2 of [5]). Given a Garside group G, let
X(G) denote the simplicial complex on the vertex set G obtained by declaring a
subset {g0, . . . , gd} ⊂ G to be a simplex if for any 0 ≤ i < j ≤ d the element g−1

i gj

is an atom (i.e., any word that can be read (bottom-to-top) along some saturated
chain in L).

The following fact is proved as Theorem 3.1 of [25], but see also Theorem 3.6
of [5] and Theorem 6.9 of [13].

Theorem 5.13 ([25]). For any Garside group G, the complex X(G) is contractible.

Remark 5.14. Returning to real reflection arrangements and Artin groups, the
lattice L is the so-called weak order on the associated Coxeter group, with the
natural labeling by standard generators (see [8] for definitions). Bestvina remarked
that in this case X(G) has a covering with contractible intersections which nerve
is the universal cover of the Salvetti complex of M(A), and by the nerve Lemma
[7, 10.6(ii)] one concludes homotopy equivalence [5, Section 2.2].

It is well-known that for any finite reflection arrangement the weak order of
the associated reflection group is isomorphic to the poset of regions (by symmetry
the choice of base chamber does not matter). Thus, one sees that the Garside-type
universal cover models specialize to Bestvina’s complex when the arrangement is
the reflection arrangement of a finite real reflection group.

Remark 5.15. In addition to Remark 5.14, it has to be mentioned that all finite-
type Artin groups can be presented as Garside groups also by partially ordering the
associated reflection group by reflection length (see [13, 14]). This gives rise to the
so-called dual Garside structure for these Artin groups (the word “dual” coming,
so far, only from some enumerative properties of the two structures). One of the
many interesting things about these orderings is that they can be defined also for
finite groups of unitary reflections as classified by Shephard and Todd [72] (see
[3, 4]). The lattices associated to the dual structures can all be described as posets
of generalized noncrossing partitions ordered by refinement [66, 4], and appear
in many different contexts. Bessis [3] shows that, in general, the Garside group
obtained in this way turns out to be the fundamental group of the quotient of the
complement of the associated reflection arrangement by the action of the reflection
group (see Orlik and Terao [56] and Orlik and Solomon [55] for a combinatorial
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study of arrangements defined by unitary reflection groups). In the same work,
Bessis was able to exploit this structure and give a proof of asphericity of all
(real and unitary) finite reflection arrangements. Since every central arrangement
in C2 is K(π, 1) [56, Proposition 5.6], only the case of dimension strictly bigger
than 2 must be handled. In all but one of those cases, Bessis shows that the
universal covering space of the arrangement’s complement is indeed homotopic
to the associated complex X(G), and thus contractible by Theorem 5.13. This
holds for all well-generated groups, i.e., for all groups that can be generated by d
reflections, where d is the dimension of an irreducible representation of the group
(the dimension of the ambient space of the arrangement we are interested in). In
the only left case the above argument must be refined, using the more general
notion of Garside groupoid, also developed by Bessis in [2]. We will come to speak
again about this topic in Section 6.

The natural question to ask is now whether these structures, and in partic-
ular the combinatorics of noncrossing partitions, can give rise to a corresponding
presentation of the actual fundamental group of the arrangement’s complement.
Note that, for real reflection groups, this is the corresponding pure Artin group.
For the type An some work was done by McCammond and Margalit [50] who gave
presentations for the pure braid group that are inspired by the pictures of ‘classi-
cal’ noncrossing partitions. But the question is open and much work still needs to
be done.

6. Applications and open ends

Spectral sequences and homology of covers. In the context of local system homol-
ogy of arrangements attention has been paid to the computation of the homology
of cyclic covers of arrangement complements, as they generalize in many ways the
Milnor fibre (see the work of Cohen and Orlik [27] and, for a survey and the rele-
vant bibliography, the paper by Suciu [74]). Therefore we want to point out that
there exist spectral sequences that calculate the homology and cohomology of ho-
motopy colimits of diagrams of spaces, thus offering an alternative to the spectral
sequence approach described by Denham [30] and later generalized by Papadima
and Suciu [58]. The original idea goes back to Segal [71], and a formulation for our
combinatorial setting is given in [81]. The complexes resulting from the applica-
tion of this spectral sequence to the general covers are described in detail in [31,
Chapter 5], where also a direct derivation of this spectral sequence starting by a
filtration by the skeleta of the underlying order complex can be found.

Minimality. The question whether M(A) has the homotopy type of a minimal
CW-complex (i.e., one that has as many k-cells as there are generators of the k-th
homology) was raised by Papadima and Suciu in [57]. An affirmative answer to
this question was given by Dimca and Papadima [34] and, independently, Randell
[64]. In the case of complexified arrangements, the question of minimality was
studied by Yoshinaga [79] who in particular attempted to describe the attaching
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maps of the lift of a minimal CW-structure to the universal cover. Indeed, one
point of interest of minimal complexes in this context is that the linearization
of the equivariant chain complex obtained by their lift to the universal covering
space is equivalent to the Aomoto complex – a well-known complex associated to
arrangements and defined from the cohomology ring of the complement. This was
first proved by Cohen and Orlik [26] and subsequently in increasing generality by
other authors [34, 80, 58].

Recently, new explicit constructions were described to actually construct such
a minimal CW-complex, at least when the arrangement is complexified. Both these
works exploit discrete Morse theory in order to describe a collapsing of all ‘super-
fluous’ cells of the Salvetti complex.

Salvetti and Settepanella [70] introduce a new total ordering of the faces
of the arrangement that they call polar ordering because it is obtained by lexi-
cographically ordering polar coordinates of a distinguished point on every face.
Given this ordering, an algorithm allows to construct the required discrete Morse
vector field, and so to describe the collapsing that leads to the minimal CW-model.
A closed formula for the boundary maps of the minimal complex is also given in
[70]. In view of an easier computation of the polar ordering, it has to be pointed
out that in fact it is not necessary to actually determine the polar coordinates.
It was shown in [33] that the construction works also with a more general type
of orderings, called combinatorial polar orderings, that are constructed from any
valid sequence of “flippings” (see [10, Chapter 5]) along which a general position
hyperplane can be “swept” through a generic section of the given arrangement.

The method used in [32] can be carried out entirely in terms of the intrinsic
combinatorics of the associated oriented matroid. The data needed to construct the
discrete Morse vector field is given by a maximal chain in the poset of regions of the
arrangement (the tope poset of the associated oriented matroid). This construction
exhibits a very direct correspondence between the no-broken-circuit sets of the
matroid and the corresponding cells of the minimal complex. However, an explicit
description of the attaching maps is still missing.

Question II. Does any interesting simplification appear by ‘lifting’ one of the
described collapsing of the cells to the Salvetti-type universal cover complex?

Complex reflection groups. The most recent achievement about asphericity of ar-
rangements is the result of David Bessis, who proved that every complex finite
reflection arrangement is K(π, 1) [3]. As we explained in Remark 5.15, the method
of Bessis involves the technique of Garside groups, and in particular, when the
group is well generated, the universal covering space is modeled by a “complex
analogue” of X(G) (Definition 5.12). Among the complex reflection arrangements
associated to well generated groups we find the complexification of the real re-
flection arrangements, and the translation of the argument of Bessis to that case
turns out to use the so-called “dual Garside structure” instead of the “standard”
one. It is then natural to ask whether, in the complexified case, a combinatorial
way exists to prove the equivalence between Bessis’ complex and Uρ̂. This problem
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amounts to a better understanding of the combinatorial relationship between the
two Garside structures of finite type Artin groups, which still lacks a satisfactory
explanation.
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401, pp. 21–44. Lecture Notes in Mathematics 317, Springer, Berlin, 1973.

[17] R. Brown; Elements of modern topology. McGraw-Hill, New York-Toronto 1968.

[18] R. Brown; Topology. A geometric account of general topology, homotopy types and
the fundamental groupoid. Second edition. Ellis Horwood Series: Mathematics and its
Applications. John Wiley and Sons, New York, 1988.

[19] R. Brown; Groupoids and crossed objects in algebraic topology. Homology Homotopy
Appl. 1 (1999), 1-78 (electronic).



Combinatorics of arrangement covers 35

[20] R. Brown, J. L. Loday; Van Kampen theorems for diagrams of spaces. Topology 26
(1987), no. 3, 311-335.

[21] F. Callegaro, D. Moroni, M. Salvetti; The K(π, 1) problem for the affine Artin group

of type eBn and its cohomology. arXiv:0705.2830.

[22] R. Charney, M. Davis; The K(π, 1)-problem for hyperplane complements associated
to infinite reflection groups. J. Amer. Math. Soc. 8 (1995), no. 3, 597-627.

[23] R. Charney, M. W. Davis; Finite K(π, 1)’s for Artin groups. Prospects in topology
(Princeton, NJ, 1994), 110-124, Ann. of Math. Stud. 138, Princeton Univ. Press,
Princeton, NJ, 1995.

[24] R. Charney, D. Peifer; The K(π, 1)-conjecture for the affine braid groups. Comment.
Math. Helv. 78 (2003), no. 3, 584-600.

[25] R. Charney, J. Meier, K. Whittlesey; Bestvina’s normal form complex and the ho-
mology of Garside groups. Geom. Dedicata 105 (2004), 171-188.

[26] D. C. Cohen, P. Orlik; Arrangements and local systems. Math. Res. Lett. 7 (2000),
no. 2-3, 299-316.

[27] D. C. Cohen, P. Orlik; Some cyclic covers of complements of arrangements. Topology
Appl. 118 (2002), no. 1-2, 3-15.

[28] P. Dehornoy; Groupes de Garside. Ann. Sci. école Norm. Sup. (4) 35 (2002), no. 2,
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[65] K. Reidemeister; Einführung in die kombinatorische Topologie. Vieweg, Braun-
schweig (1932). Reprint Chelsea, New York (1950).

[66] V. Reiner; Non-crossing partitions for classical reflection groups. Discrete Math. 177
(1997), no. 1-3, 195-222.

[67] M. Salvetti; Topology of the complement of real hyperplanes in Cn. Invent. math. 88
(1987), pp.603-608.

[68] M. Salvetti; The homotopy type of Artin groups. Math. Res. Lett. 1 (1994), no. 5,
565-577.

[69] M. Salvetti; On the homotopy theory of complexes associated to metrical-hemisphere
complexes. Discrete Math. 113 (1993), no. 1-3, 155-177.

[70] M. Salvetti, S. Settepanella; Discrete Morse theory and minimality of arrangements.
Geom. Topol. 11 (2007), 1733-1766.

[71] G. Segal; Classifying spaces and spectral sequences. Inst. Hautes Études Sci. Publ.
Math. 34 (1968), 105-112.

[72] G. C. Shephard, J. A. Todd; Finite unitary reflection groups. Can. J. Math. 6 (1954),
274-302.

[73] E. H. Spanier; Algebraic topology. Springer-Verlag, New York-Berlin, 1981.

[74] A. Suciu; Fundamental groups of line arrangements: Enumerative aspects. In Ad-
vances in algebraic geometry motivated by physics. Contemporary Math., vol. 276,
A.M.S., Providence, RI, 2001.

[75] R. Stanley; Enumerative combinatorics, Vol. 1. Wadsworth and Brooks/Cole, Mon-
terey, CA, 1986; reprinted as Cambridge Studies in Advanced Mathematics, Vol. 49,
Cambridge University Press, Cambridge, 1997.

[76] H. Terao; Modular elements of lattices and topological fibration. Adv. in Math. 62
(1986) n.2, pp.135-154.

[77] V. A. Vassiliev; Complements of Discriminants of Smooth Maps: Topology and Ap-
plications. Transl. Math. Monographs 98, Amer. Math. Soc., Providence, RI, 1994.

[78] R. M. Vogt; Homotopy limits and colimits. Math. Z. 134 (1973), 11-52.

[79] M. Yoshinaga; Hyperplane arrangements and Lefschetz’s hyperplane section theorem.
Kodai Math. J. 30 (2007), no. 2, 157-194.

[80] M. Yoshinaga; Chamber basis of the Orlik-Solomon algebra and Aomoto complex.
ArXiv: math/0703733
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