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ABSTRACT. We point out two errors in the paper “The integer cohomology
algebra of toric arrangements”, Advances in Mathematics, Vol. 313, pp. 746—
802, 2017. The main error concerns Theorem 4.2.17. In particular the Diagram
(8) does not commute in general. This invalidates the description for the
ring structure of H* (M (A);Z) given in Theorem A and B. Still, under some
restrictive hypotesis on A the results of Theorem 4.2.17 holds. We show a
workaround to provide a description of the cohomology ring H* (M (A);Z)
when A is a real complexified toric arrangement. The second error concerns
the proof Theorem 7.2.1. The claim holds, but the proof is incorrect. We
refer to a counterexample for the argument given in the proof and we provide
references for a correct proof.
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1. PRESENTATION OF THE COHOMOLOGY ALGEBRA: THE INCORRECT RESULT

The claim of Theorem 4.2.17 in [CDI7] does not hold for all choices of the basis
chamber upon which relies the construction of the subcomplexes Sy,. In particular,
for some such choice the Diagram (8) of does not commute. This invalidates
the description for the ring structure of H* (M (A); Z) given in Theorem A and B: in
particular, the rings A(A) and B(.A) are isomorphic to a graded algebra associated
to a filtration of H*(M(A);Z) induced by the Leray spectral sequence, but in
general they are not isomorphic to the ring H*(M(A); Z) itself.

Remark 1.0.1. The claim Theorem 4.2.17 in [CD17| does hold if the facets Fj, and
F| that define the complexes Sp, := Sp, and Sy = Sy (see [CD17, Def. 4.2.16.])
are adjacent to the same chamber By of Ag.
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2 FILIPPO CALLEGARO AND EMANUELE DELUCCHI

In particular, under the restrictive hypotesis on A that there exists a chamber
By of the arrangement Ay such that for every layer L of Ay the support of the
intersection L n By is L, the results of Theorem A and B of [CDI17] hold.

In the following Sections [2] and [3] we show a workaround that allows us never-
theless to provide a description of the cohomology ring H* (M (A);Z) as a subring
of the direct sum @rec H*(Sr;Z) when A is a real complexified toric arrangement.
Unfortunately the workaround presented here does not apply to non real com-
plexified toric arrangements. Hence in this erratum we will assume that all toric
arrangements are real complexified.

For a general toric arrangement A, not necessarily real complexified, a descrip-
tion of the ring H*(M(A);Z) in the style of the Orlik-Solomon algebra of hyper-
plane arrangements, obtained using other methods, can be found in [CDD™18§].

2. TWO CLASSES OF SUBCOMPLEXES

We aim at defining (cellular) representatives for certain homology classes. Intu-
itively, these classes will be of two types.

The first type of classes, called S\gf will represent cycles that are parallel to
1-dimensional layers M and lie in certain subcomplexes Sy with M < L (more
properly in Sz r,, with M < L, under certain conditions on Fy, L and B, see
Remark below). The second type are classes Wy, representing loops around a
codimension-1 layer H € A.

2.1. Setup. We start by recalling the setup and some notation from the original
article.

Let A denote a finite toric arrangement in the complex torus 7. Recall that a
layer of A is any connected component of an intersection of elements of A. We call
C the set of all layers, partially ordered by reverse inclusion. This poset is ranked
(by the layer’s codimension) and we denote by C; the set of elements of C with rank
i. To any L € C we can associate the arrangement Ay = {H e A|L < H} in T
and the arrangement A = {H n L | H ¢ A} determined by A in the torus L.

A central tool is the category F(A), whose objects are all faces of the induced
(polyhedral) cellularization of the compact torus and where morphisms F — G
correspond to the boundary cells of G attached to F' (see [dD15, Rmk. 3.3]. Given
any ' e F(A), there is a unique minimal layer containing F', called the support of
F and denoted by supp(F). We will sometimes write A" for A"PP(F) and Ap for
Asupp(F)-

To every face F' € Ob F we associate the “local” real hyperplane arrangement
A[F] (this is the real part of the (complexified) hyperplane arrangement defined by
A in the tangent space to T' at any point in the relative interior of F'). Moreover,
associated to A we consider an “abstract” arrangement of hyperplanes in R? that we
call Ag, which can be thought of as the union of all A[F] where F ranges in Ob F
(omitting repetition of hyperplanes). Key is the fact that, for every F € ObF,
A[F] is a subarrangement of Ay. In particular, for every layer L € C there is a
subspace X1, € Z(Ag) defined as the intersection of the hyperplanes associated to
hypertori containing L. Given any F € F(A), we let XI' be the smallest flat of
A[F] containing X7,.

As is customary for arrangements of hyperplanes in real vector spaces, after
choosing a “positive side” of each hyperplane we can associate to every point x
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in the ambient space a sign vector v, € {0, +, —}PPerplanes whose value on any
hyperplane H is 0, +, — according to whether x lies on H, on the positive side of
H or on the negative side of H. A face is then the set of all x with a fixed sign
vector. The set of all faces is partially ordered by inclusion of topological closures.
The top-dimensional faces are called chambers.

For every F we will thus consider the poset of faces F(A[F]) where G < K if
G C K, and the set T(A[F]) of chambers. For every morphism m : F' — G there
is a natural inclusion 4, : F(A[G]) — F(A[F]) and in particular we call F}, the
image of the minimal element of F(A[G]) (see [CD17, §4.1]).

Now for each arrangement A[F'] one can construct the associated Salvetti com-
plex Sal(A[F]), which models the homotopy type of the complement of the com-
plexification of A[F]. A natural construction of Sal(A[F]) is as the order complex
of the partially ordered set S(A[F]) of all pairs [G,C] with C € T(A[F]) and
G < C in F(A[F]), partially ordered via [G,C] > [G',C'] if Cq = C' (this
means: no hyperplane in A[G'] separates C' from C’, see [CDI17, Def. 3.3.1]) For
each chamber C' we consider the subposet S¢ € S(A[F]) of all pairs [G, K] such
that K = C¢ where G ranges over F(A[F]). It will be useful to stratify S(A[F])
via the subposets SY(A[F]) := Josg Sc. For details on these constructions see
[CD17, §3.3].

Returning to the toric arrangement A, a model for the complement of M(A) :=
T\|JA can be obtained from the diagram & on the index category F(.A)°? that
associates to every object F the poset S(A[F]) and to every morphism m : FF — G
the order-preserving map 2(m) : S(A[G]) — S(A[F]), [G, K] — [im(G),im(K)].
Then the ”Grothendieck construction” {2 gives an acyclic category that is ho-
motopy equivalent to M(A). Crucial to our discussion will be a certain type of
subcategories of € . For every Y € C and every Iy € F(Ap) whose linear hull |Fp|
is Xy consider the subdiagram %y r, of Z induced on the subcategory F(AY) of
F(A) by the subposets Py f, (F) := ST°(A[F]). Then, we set Sy r, := S_@y,poﬂ

Definition 2.1.1. Given any chamber C € T(Ap) and any F € F(A) we denote
by C(F) the unique chamber of A[F] containing C.

2.2. The cycles X

Definition 2.2.1. Let A be an essential toric arrangement in a torus T of dimension
d. For every M € C4_; fix, once and for all, a chamber M C e T(Ap) adjacent to
X, and choose a minimal gallery in T (A)

MC = Cy,C,. .., Crary = oppy, (= O).

Here, for every face F € R? of Ay we write —F for the negative of F viewed
as a set of vectors in R¢. Moreover, if C' is a chamber adjacent to Xs, with

opx,, (C) we mean the unique chamber such that CnXy= opx,, (C) n Xj and
S(C,opy,,(C)) = Ax,,. In particular, note that S(C,—opy,, (C)) = Ao\ Ax,,
Remark 2.2.2. The choice of a different M, say MC’, would give a different
gallery, say C{,..., C’,’C(M). Let p := Ry,..., Ry be a minimal gallery from Cj to
Cp- Notice that, since 5(Co, Cj) S Ax,,, we have S(Co, Cy) n S(Cp, Cy () = -
Thus the concatenation of p with C{,.. .,C,’C( M) is a minimal gallery, as is the
concatenation of Co, ..., Cyar) with p:=opx,, (—p).

n the original paper this is Definition 4.2.6 and 4.2.8. Here we added the subscript Y for clarity.
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Given any face F' < M, let

Cq s Chiarpy
be an enumeration of the set {C;(F')};—o,... k(a) in increasing index order and call
W} the wall separating C}* from C},, in A[F].

Remark 2.2.3. Notice that the sequence C{", W{', C¥ ... defines a minimal gallery
in A[F, hence it does never cross any hyperplane in A[M]. In terms of sign
vectors (see [CDI7, §3.2.1)), vor(H) = ywr(H) = yuc(H) for all i and all
H e A[F] n A[M].
For every B € T(Ay), set
vi(M; B, F) := [CF,CF] fori=0,...,k(M,F),
. . — F ;= —
¢i(M; B, F) := (Wi, B(F)wr ] for i =0,....k(M,F)

Now consider the subposet of S(A[F]) induced on
Path(B,M,F) {UZ(M B F)}z 0,.. ,k(MF)u{el(M B F)}z 0,. MF) 1-
This poset has the following form:
eo(B; M, F) \(B; M, F)

/\/'\

vo(B; M, F) v1(B; M, F) va(B; M, F)
so that | Path(B; M, F')| is a topological path from vy (B; M, F) to viar, 7y (B; M, F).

Remark 2.2.4. Notice that if dim(F') = 1, then k(M, F') = 0 so Path(L; M, F') is
a single vertex which we will denote v(L; M, F)).

Moreover, and crucially, for any two B # B’ we have v;(M; B, F) = v;(M; B, F)
for all i and e;(M; B',F) = ¢;(M; B, F) if and only if the affine span of W; does
not separate B from B’ (hence B(F') from B'(F)). If we set

&(M; B, F) i= W, (~=B(F))wr]
we can state more precisely
o r | e(M;B,F) if [WF| ¢ S(B,B)
ei(M; B, F) = { €;(M;B,F) otherwise
For every H € Ar\Ajs there is a unique i such that |W}!| = Hp, thus we can

define a subcategory E(H; B, F'):
ei(M;B,F) e;(M;B',F)=¢e(M;B,F)

v [ >

Uz(MvBaF) U’iJrl(M;B?F)

Definition 2.2.5. Let A be an essential toric arrangement in a torus 7" of dimension
d. For every M € Cq—1 and every B € T(Ap), define the induced subcategory of
§ 2 on the vertex set

Ay = |J {(F,X) | X e Path(B; M, F)}
FcM



ERRATUM: “THE INTEGER COHOMOLOGY ALGEBRA OF TORIC ARRANGEMENTS” 5

In order to understand the structure of the subcategory A let us first consider
the category F(AM). Since it is the quotient of F((A")*) by a regular action, Every
object P of F(AM) of dimension 0 is the origin of two arrows and every object G
of dimension 1 is the target of two arrows. Choose an object Py of dimension 0
and consider the two arrows, say mi, mso , originating in Fy. Then F,,, = —F),, in
F(A[P]) and in particular exactly one of these — say, ms — is adjacent to —B(Fp).
Call G the target of mg, and call P; the origin of the other nontrivial morphism
ending in Gy. In this way we can naturally label the objects of F(AM) as

P0—>G0<—P1—>G1<—...—>G£(M)<—P0.

Lemma 2.2.6. In the category {2 we have, for all i modulo ¢(M), arrows
(Gi,v(B; M, Gy)) — (P, u(B; M, Fy))

if and only if either j =i+1 andl =0, orelse j =i andl = k(M). (The indez-less
v(B; M, G;) is the only possible r.h.s. associated to G;, see Remark|2.2.4)

Corollary 2.2.7. The category A¥ is of the form

(Po,eo(B; M, Py))  (Po,eg(m,py)(B; M, Fo)) (Go,v(B; M, Go)) (P1,e0(B; M, Pr1))
(P, vo(B; M, Py)) (Po, v (M, Py) (B; M, Po)) (Py,v0(B; M, Py))
In particular, it is a poset homeomorphic to S*.

Lemma 2.2.8. The homotopy class of the path AY does not depend on the choice
of the chamber MC' in Deﬁnitionm

Proof. Fix a face F < M. The elements of Path(B; M, F) are, by definition, cells of
the Salvetti complex of A[F]. In this interpretation, they correspond to a minimal,
positive path from vy (M, B, F') to vy, py(M, B, F). Now consider the same con-
struction with a different choice for the chamber ¥ C, say M, as in Remark
and let Path(B; M, F')’ be the obtained minimal path. In the same way, the min-
imal gallery p = Ry,..., Ry and p of Remark defines positive minimal paths
pf and pf" in Sal(A[F]) such that the concatenation of p with Path(B; M, F)’ is
a positive minimal path. In particular, the paths (p!") Path(B; M, F)(p!")~! and
Path(B; M, F') are homotopic in the Salvetti complex of A[F]. Call hp this ho-
motopy.

Now consider the entirety of AY and (A% )’ constructed choosing ¥ C and M,
respectively. Notice that, if G has dimension one, then (G, p%) = (G, 5%). More-
over, the homotopies hp are carried by cells of (F,Sal(A[F])), and thus the union
of such cells defines a homotopy between the concatenation of the Path(B; M, F)’
(i.e. (AY)) and the concatenation of the (pf) Path(B; M, F)(p)~ .
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(Py, e0(B; M, Py)) (Po, ek, py)(B; M, Po)) (Go,v(B; M, Gyp)) (Py,eq(B; M, Py))
(Po,vo(B; M, Py)) (Po, vi(m, py) (B; M, Po)) (Py,v0(B; M, Py))
pFo hp, p}so pC= 5 P hp,
(Po, eo(B; M, Py)) (Po,er(ns,py)(B; M, Po)') (Go,v(B; M, Gg))’ (Py,eq(B; M, Py))
(Po, vo(B; M, Po)’) (Pos vk, Pg) (Bs My Po))  (Py,vo(B; M, P1)’)
([l

Recall from [CD17, Thm. 4.2.3 and Def. 4.2.6] that for every fixed layer L and
every face Fy € F(Ag) whose support is L there is a subcomplex Sy, g, of Sal(A)
(notice that such complexes were indexed simply by Fy in [CD17] — here we need a
more refined notation. The homotopy type of Sy, f, is that of F(AY) x S(A[L]).

Remark 2.2.9. If M is a one-dimensional layer contained in L, we have AY <
SL,FO if F() = Eﬁ LO

Definition 2.2.10. Let [AY] € Ci(|{2|) denote the cycle supported on A}
uniquely determined by setting the coefficient of (vo(B; M, Py) — eo(B; M, Fy))
equal to 1.

For the following ”basis-change” formula we need to define, for any F € F(A)
and any two chambers B, B’ € T(Ap), the set

(2) Sp(B,B') :={H € A | Hy separates B from B'}.
Proposition 2.2.11. Let B,B’ € T. Then
[AFT-[Ag1= >, > [EHBP)
PCM HeSp(B,B')\Au

where [E(H; B, P)] is the 1—cycle determined by the subcategory defined in with
the orientation given by setting the coefficient of v;(M; B, P) — e;(M; B, P) equal
to 1.

2.3. The generators Wy.

Definition 2.3.1. For every H € A choose, once and for all, #C € T(Ap). For
every m : F' — G € Mor F(A) with supp(G) = H, let Cy := HC(F)p,,, Cy :=
(=" C(F))F, be a numbering of the two chambers of T (A[F]) adjacent to Fy,.

(F7 [szcl]) (F7 [FTVHO?])

Qm — <7 < S(A[F])

(Fv [01,01]) (Fv [02702])

Remark 2.3.2. The case where m = idg : G — G is instructive. In this case,
Q%dG) is the order complex of the subposet

(G,[G,C1]) (G,[G,C:])

Qida) — | < = S(A[G])

(G,[C1,Ch]) (G,[Cs,Cx])
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Definition 2.3.3. Let [Q("™)] denote the 1—cycle supported on Q") uniquely
determined by the orientation given by setting the coefficient of ((G,[C1,C4]) —
(G,[G, C1])) equal to 1.

Definition 2.3.4. Let H € A and L € C. Define
! if Hy ¢ S(1C, B)
GQLBW{ —~1 if Hye S(¥C, B)

Lemma 2.3.5. We have the following relations in homology:
(i) Form:F — G, [QU)] ~ [Qde)]
(ii) [QF =] ~ [QF=E)] when both G, G’ of mazimal dimension in F(AT).
(iii) [P =W PD] = (H, B)[E(H; B, P)) if supp(W}") = H.

Proof. First notice that if m : F — G with G of codimension 1, then (e.g. by
checking Remark 4.1.1 and ff. in [CD17])

QM = j,,(Qe).

In particular the complex Sal(A4), being obtained as a homotopy colimit, contains
the mapping cylinder of jn|s(4[c)) in the form of the nerve of the subcategory

(G,[G,C1]) (G,[G, C2])
Qlida) | |
(G, [C4,C1]) (G, [C2, C2])
j?n
(F7 [Fmvcl]) (F7 [FWMC?])
| |

(Fv [Clvcl]) (Fv [02702])

which gives a homotopy inside Sal(A) between Q¢ and Q("™) that sends edges to
“corresponding edges”. Thus (i) follows.

Part (ii) follows analogously by a homotopy between the two subcomplexes in-
side the subcomplex S¢(A[F]) = S (A[F]) of Sal(A) (see the discussion around
Proposition 3.3.5 in [CD17]).

For part (iii) notice that, for any B, Q=W and Z(H; B, P) are the same
subposet. The associated chains differs by a sign depending on whether B is on the
same side of Hy as 7C. [

Corollary 2.3.6. For every H € A the homology class of any [Q(m)] does not
depend on the choice of m : F — G as long as supp(G) = H.

Definition 2.3.7. For every H € A let us denote by
(:JH € Hl(Sal(A), Z)

the homology class of (any) [Q(™)] with m : F — G and supp(G) = H.
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2.4. The generators ng

Definition 2.4.1. Let Xf‘éf be the homology class of [A¥].

Notice that this homology class is well-defined and independent on the choice of
M in Definition since by Lemma the paths A¥ obtained with different
choices of this chamber are homotopic.

Proposition 2.4.2.

(3) M=M= Y eH B)u
FcM
HeSp(B,B')\Aum

Proof. Lemma that allows us to eliminate the dependency on P in the right-
hand side of the claim of Proposition[2.2.11] and to rewrite it as in this Proposition’s
claim. 0

3. COHOMOLOGY AND RECURSION
3.1. Quotients of toric arrangements and recursive construction.

Definition 3.1.1. Let A be a toric arrangement and let L € C a layer. Let Lo be
the coset of L that contains the identity of T". Recall that Ay, is the subarrangement
of A given by the hypertori that contains L. Consider the arrangement

Ap = Ap/Lo :={H/Lo, H € A} in T/Ly.
We define the quotient map
fr o M(A) — M(AL)
as the composition 7y, o4y, of the inclusion
ir : M(A) > M(Ar)
and the projection
L, M(AL) = M(AL/Ly).
Definition 3.1.2. The quotient by L induces order-preserving maps
7r, : C(A) — C(Ap) and 7, : F(A) — F(AL)
and the latter lifts to the natural order-preserving map
FA) = F((AL)),  Fomin{Ge F((A)) | F < G).

Remark 3.1.3. We note two elementary facts about sign vectors that can be
gathered directly from Definition 3.2.1 in the original paper.

(1) For all m € Mor F(A) with source object K and every H € A[K]xr we
have that VEo, () (H/Lg) = 7, (H).
(2) For all G, K € A[F] and every X € Z(A[F]) we have (Gx)xy) = (Gk)x-

We see that the linear arrangement (Ay)o is (Ao)x, /XL, and in particular we
have a natural map

7L s F(Ao) = F(Ao)x, ~ F((AL)o), F — Fx, .
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Similarly, for every F € F(A), the arrangement Ay [r1,(F)] is the essentialisation
[OT92, Lem. 5.30] of the sub-arrangement of A[F]xr < A[F] consisting of all

hyperplanes containing X". Thus the map
g+ FA[F]) = F(AL[rL(F)]), K~ K/Xp
is order preserving and surjective, and restricts to an isomorphism of posets
F(A[F]xr) = F(ALro(F))).

Thus we can identify S(Ay[r1(F)]) with S(A[F]xr) and [CDIT, Def. 3.3.2] gives
a natural map

bxr : S(A[F]) = S(AL[mL(F)]), [K,C]— [Kxp,Cxr]
Lemma 3.1.4. For all layers L,
(71, bxx) : 2(A) = 2(Ar)
is a natural transformation.

Proof of Lemma[3.1.J] In order to check naturality pick any m : F — G in Mor(F(A))
and [K,C] € S(A[G]). With the definitions:

(mr,byF)

(F [im (), im (C)]) —— (72.(F), [(im(K)) xF, (im(C)) xF])
I
(m.gm) (L (E); liny (m) (Ka)s iy, (m) (Cam)])
(m(mmmm)ﬁ

(m(G), [Kgw, Caw])

and we need to prove equality of the two expressions on the top right-hand-side. It
is enough to prove that, for every K € F(A[G)),

iny (m) (K@) = (im(K)) xr in A[F]xr.

This we do using the definition [CD17, Rmk. 4.1.1]. First consider the right-hand
side: it is defined by

(mr,bg(ry)

(G, [K,CT)

@) o 1 g () = 20,10 (E1) = { T 29U

for all H € A[F]xr.
In the same vein, the left-hand side is determined by

VEy, oy (H) = vp,,(H) i H ¢ A[G]
(5) Vi o (K ) () = { e () = yic(H) it H e A[G]

where we used Remark (1). Now, with [CD17, Rmk. 4.1.1] we see that
VF, (H) = i, (x)(H) for H ¢ A[G], completing the check of the identity between
the two sides of the required equality, as expressed in Equations ({d) and (5). O

Definition 3.1.5. Call -
@y : Sal(A) — Sal(Ap)
the (cellular) map induced by the natural transformation of Lemma

We collect some properties on the behaviour of this map.
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Lemma 3.1.6. Let A be an essential toric arrangement in a torus T of dimension

d. Fiz a layer LeC.

(1) For every M € Cq_1 such that Xp; <= X and every chamber B € T(Ap),
@ (AY) is a single vertex. In particular the induced homology homomorphism
satisfies ~

‘I)L*()‘g[> =0
(2) Consider any G € F(A) with supp(G) = H € A.
If H 2 L, then ®1,(Qd6)) = QUdrr @),
More generally, choosing ™) C := (HC) gy /Lo for every H € A, we have

~ W ifH2 L
q’L*(“H)_{ 0 w i§H$L

(8) For every layer Y and all Fy € F(Ag) with
L (Sy,r) S Srp(v),me(Fo)-
Proof. (1): With Remark for all F' < M, we have (Cf)xf = (W'F)Xf =

(MC’)XLF for all faces F € M and 0 < i < k(M, F). Therefore, comparing Definition
We see AY = {(r(F), [MCX5,MC’X5])}, a singleton.

(2): If H 2 L, then G = H. Direct computations of the image under ®;, for
each of the elements of Q¢ (Remark [2.3.2) and a glance at Definition verify
the claims in this case. If H D L, then G is trivial and & (Q09)) is a single
vertex.

(3): Recall that Sy, g, is defined as { Py p, for a subdiagram %y g, of Z on the
index category F(AY) [CDI7, Def. 4.2.6]. Similarly, if 2 is the diagram giving
Sal(Ap), then Snp(Y),mr(Fo) 18 S@n(y),m(po) for a subdiagram over the index cat-
egory f(ZzL(Y)). Since @1 (Sy,r,) = §PL(Pv,r,), in order to prove the claim we
have to prove that ®, restricts to a natural transformation %y, r, = gm(Y),m( Fo)-

Now obviously WL(.F(AY)) < F((Ap)™()), thus we are left proving that, for
every face F in F(AY), byx (ST (A[F])) € §™=F0) (AL [71,(F))).

Pick any [G, K] € Sf°(A[F]). By definition this means that K = Bg for some
chamber B € ’T( [F]) adjacent to Fyy. Now, since £ is order preserving, 7% (B) is
adjacent to 77 (Fy) and 77 (B)rr(c) = (Bxr)a Gy = (Bg)xr = ] (K), where the
second equality uses Remark (2). Thus, bxr ([G,K]) € ST ) (AL [7p(F)]).

d

Corollary 3.1.7. Fiz a chamber B € T(Ao) and a layer L € C(A). We have
Q14 (He(S1,8;Q)) © Hi(Srp(1),71.(B); Q)

In particular, for every M € Cq4_1 we have

(6) @L*(X%) € Hy(Srp(1),m(B); Q)-
Proof. The result follows from the following commutative diagram:
AY St.B oz Sal(A)
Jos Jo.

Prr(T)

Srp(T),r(B) — Sal(Ar)
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where the existence of the leftmost vertical arrow follows from Lemma (3). O

Remark 3.1.8. Let L € C be a layer and consider the map @, : Sal(A) — Sal(Af).
Let Y € L. We have that 7y (L) = n(Y) if and only if Y < L.

Remark 3.1.9. Let F € F(Ap) with supp(F') = Ly. Recall (see [CD17, Lem. 4.2.15])
that the subcomplex Sy, r < Sal(A) is homotopy equivalent to the product L x
M(Ac[L]), where M (Ac[L]) is the complement of the essentialization of the com-
plexified central linear arrangement Ac[L] = A[L] ®& C. Hence the cohomology
ring of Sy r is generated in degree 1.

In particular the cohomology ring H*(Sx, (1), (r); Q) is the Orlik-Solomon al-
gebra generated by the restrictions of the forms wy, (g for L ¢ H.

Lemma 3.1.10. Let A be a toric arrangement invariant by the action of an element
g € T. Then the multiplication by g induces a maps pg : Sal(A) — Sal(A) and
tg : Sp,r — Sp,F such that the following diagram commute

M(A) —L— M(A)

J J

Sal(A) —2 Sal(A)

J ]

Hg
r— SLF

)

Moreover the map g : Sp.p — Sp.p s homotopy equivalent to the identity.

Proof. The multiplication by g on T lifts to a translation 7, in the universal cover
V ~ R? of T, where the periodic arrangement A is invariant under 7,. In partic-
ular, 7, leaves the poset of faces invariant and, hence, induces an automorphism
u_g of the Salvetti complex Sal(A"). Now 7, commutes with the standard inclusion
v: Sal(Al) — M(A'") as well as with the translations of Z% = R?. Hence, so does 1}
and, since Sal(A) = Sal(A")/Z? (see [CDI7, Thm. 4.1.3]), it induces the required
map (g and the top half of the diagram commutes. Now, the explicit form of ;14 as
a simplicial map on | § 2| is

Ng(Fv [G7C]) = (ng [G, C])

for all F € F(A) and every [G,C] € S(A[F]) = S(A[¢gF]). (Recall that, by
definition, A[F] = A[L] where L is the layer supporting F, and so A[F] = A[F'].)

In particular, this map restricts to every layer L and to pg : Sp.r — Si,F.
Under the homotopy equivalence Sy, r ~ F(AL) x S(A[L]) of [CD17, Lem. 4.2.15]
the map p14 is the identity on the second component and the cellular map induced
by multiplication with ¢g in T in the first component. But the continous map L — L
defined by multiplication with g is homotopic to the identity on L ~ F(AF) - and
any homotopy accomplishing this can be composed with the identity to give a
homotopy between p4 : S, 7 — Si,r and the identity. O

Lemma 3.1.11. Let A’ be a sub-arrangement of A of the same rank. The inclusion
M(A) — M(A") induces a map

VU : Sal(A) — Sal(A)
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that restricts to
v SL,F g Si,ﬁ

where L (resp. F) is the smallest layer of A" containing L (resp. the smallest face
of A" with support L containing F') such that the following diagram commute

M(A) —— M(A)

J

Sal(A) —2— Sal(A4)

|

Proof. Consider the arrangements A! and (A")! in V = RY. Clearly every open
cell F of the polyhedral stratification of V induced by A is contained in a unique
cell s(F) of the stratification induced by (A’)!. This defines an order-preserving
function s : F(A!") — F((A)") that induces a poset map Sal(A") — Sal((A)"),
[G,C] = [s(G),s(C)] (consider any two chambers C, C’ of A': every hyperplane
separating s(C) from s(C’) also separates C' from C’, therefore [G,C] = [G'C’]
implies [s(G),s(C)] = [s(G"),s(C")]). The canonical inclusion ¢ : Sal(A') —
M (A" sends every [G,C] to a point in the (open and convex) set G +iC < V ®C.
This inclusion gives a section of the deformation retraction r : M(A") — M ((A)").
Therefore, the diagram on the left-hand side commutes, and hence so does, up to
homotopy, the one on the left-hand side.

A

Y4
Serp — S

e
5]

)

M(A") —— M((A)) M(AT) —— M((A))
Sal(A") —— Sal((A")") Sal(A") —— Sal((A")")

Passing to the torus means considering the quotient by the action of the group
of translations Z% < V - call ¢ : V — T this map. Since s commutes with ¢, it
descends to a functor of acyclic categories

¥ : Sal(A) — Sal(A").

Since the inclusion & can be chosen equivariantly, the image under g of the above
diagram is a commutative diagram

M(A) —— M(A)

]

Sal(A) —X— Sal(A')

Now notice that for every F € F(A) we have F = ¢(s(F")) for every choice of F'
in ¢g7'(F). Therefore, as a simplicial map between |{2(A)| and |{2(A')|, ¥ is
given on vertices as

(7) U(F,[G,C)) = (F,[G,C]).
It follows that W restricts to a map Sy r — SZ,F' O
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Remark 3.1.12. From the equality we immediately deduce that for every H
such that H L, the image U, (@p) vanishes. In order to see this, notice that
we can choose a representative of the homology class &y to be Q¢ < Sy p for
some face G of A supported solely on H. Now, if H is such that H D E, the image
W, (Op) vanishes. In fact, in this case A’[G] is the empty arrangement with a
unique face K. Now applying Equation @ to the explicit expression of Q¢ given
in Remark the image W(Q¢) is the single vertex (G, [K, K]).

Let i : A" — A be the inclusion map and assume that for H € A’ we choose
) e T(Ap) as the smallest chamber in 7 (Ag) that contains 7C € T(Aj). Then
if H 2 L with Equation (7 one checks that W(Qe) = Q¥&, thus U, (Dy) = Dp.

3.2. Choices for a presentation. Let A be an essential toric arrangement in a
torus T' of dimension r. In order to provide a presentation of the cohomology ring
H*(M(A); Q) from the combinatorial data we need to make some choices.

Choice 3.2.1. For every layer L € C we choose a chamber B(L) € T (A) such that
the intersection B(L) n X, has maximal dimension and we set

F(L):= B(L) n X1, € F(Ap).
Hence we will simply write Sp, for S, p(r).

Notice that the face F(T) is actually a chamber in T (Ag). When the setting
of the toric arrangement A is understood we will write AM for A%T) and AM for

X%(T). It follows from Remark [2.2.9| that we have AM < Sy = St r(r)- Hence M
is a homology class in H; (S1;Q).

Choice 3.2.2. Once for all we choose elements My, ..., M, € C,_1 such that
Br(A) := (A\M1 . My
is a basis of Hy(S7; Q).

This can be done since the arrangement is essential and hence the Q-span of
the defining characters is Hom(7T,C*) ® Q ~ H'(S7; Q). By duality the set of 1-
dimensional layers C,_; generate H(T; Q). Moreover we have that the projection
St — T., which is a homeomorphism, maps A — M. Hence the set {\M | M €
Cr—1} generates Hy(St;Q).

Definition 3.2.3. We define the following set:
B(A) := {\M1 . XMy UGy | He A
Clearly we also have that the set B(A) is a basis of Hy(Sal(A); Q). In fact,

under the natural map Sal(A) — T, (see [CDI7, Rmk. 4.1.6]) each of the classes

Wy maps to a trivial homology class in T (in fact, all vertices of dic), see Remark
map to the same vertex of the celluarization of T.) Moreover, since for each

H we have that @, (Og) is a non-trivial class in H;(Sal(Ag); Q), while the cycle
@ (D) is trivial in Hy (Sal(Ag); Q) for H' # H (see Lemmal3.1.6) we have that
the classes Wy are linearly independent. Finally, since we have the equality

rkH; (Sal(A); Q) = 1kT + | A|
the set B(A) is a basis of Hy(Sal(A); Q).
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Definition 3.2.4. Now we can define the set of classes
Bp(A) := (AMU(T), ..., AM(T)}
as the basis of H'(Sy; Q) that is dual to By (A).

Remark 3.2.5. Recall that there is a natural projection on the compact torus
Sal(A) — T, that induces by restrictions maps S, — T (see [CD17, Rmk. 4.1.6 and
Thm. 4.2.3]). In particular there is is a natural isomorphism between H*(Sr;Q)
and H*(T,; Q) induced by the maps Sy — T.. Using the inclusions

Sr — Sal(A) —> T.
we can identify H*(T,; Q) ~ H*(Sr; Q) with a sub-algebra of H*(Sal(A); Q).

Definition 3.2.6. For i = 1,...,r we will write A\™: for the cohomology class in
H'(Sal(A); Q) that is the restriction of the class \Mi(T') € H'(S7;Q) ~ HY(T.; Q).
Hence we can define the classes wy, for H € A, such that the set

B(A) := (MM XMy O {wy | H e A}

is the basis of H(M(A); Q) that is dual to B(A).
For every layer L we will write wg (L) (resp. AMi(L)) for the restriction of the
cohomology class wy (resp. AMi) to SL,F(L)-

We will write Z € H*(M(A); Q) for the ideal of H*(M(A); Q) generated by the
classes A\M1 ... AMr_ Notice that the definition of the ideal Z depends on the choice
of the chamber B(T'), but not on the choice of the layers M, ..., M,.

Choice 3.2.7. For every layer L € C of rank k > 0 we choose elements Ny(L), ...,
Ni(L) € Cr—1 contained in L and such that the cycles

Ny (L) N L
O35y Anity )

are linearly independent in H:(Sy p(ry; Q).
Moreover we will consider the set of hypertori
H;, . .,H_eA
such that L H;,, that is the set A;. Hence we can define the set
Definition 3.2.8.

2 Ny (L) SNk (L ~ ~
BL(A) = (g AR O @y, Om )

Clearly the set EL(A) is a basis of H1(Sp,r(1); Q).
Definition 3.2.9. We write
Ni(L Ni(L
Br(A) = i) i) O fwn,, (D), wn,, (D)}

for the basis of H'(Sy, p(); Q) that is dual to BL(A).
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3.3. Ideals and cohomology maps.

Definition 3.3.1. We define Z(L) c H*(S p(r); Q) as the ideal of H*(Sp, p(1); Q)
N1(L) AV (L)

generated by the classes )\B(L) o AR -

Lemma 3.3.2. Let @1, : Sp p(ry — Sal(A) be the inclusion map. The induced
restriction homomorphism in cohomology ¢% : H'(Sal(A); Q) — H'(Sy, p(r); Q)
maps as follows:

oF M Y anyrty)
where the coefficients ap; are given by the relation XgELT) =3 ahiii‘fgﬂ andif Lc H
we have

of cwhg > wy(L) + Z Z «(H, B)Ag€’£§)7
h=1 FQN}L(L)
HGSF(B(L)7F(T))\AN}L(L)

while if L & H we have

k
Nu(L
OF wg — Z Z e(H,B)/\B’(IE)).
h=1 FSN,(L)
HeSp(B(L),F(T)\An,, (L)

Proof. Using the homological basis of H1(Sy, p(1); Q) we can consider the pairings

| o=

B(L) B(L)

:ﬁN AM: +2€Hf AMi =
AR [a)2

F(T)
= J AMi —
N
Ap(r)

)\Mi = Qp;-

= ~M;
JZ ah/J')‘F(JT)

where the second equality follows from Equation and we don’t need to specify the
range of the sum and the coefficients of the terms g since they are not significant
in the computation. In the same way we have:

[ erm = o
= AMi f A= 0.
ﬁ pl +ZEH on ’

AR (T)
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The analogous computation for wy gives:

J;\N <pf(wH) = J:\Nh WH =

h
B(L) B(L)
- [, 3 (HBL) [ wn =
Nty FCN, O
H'eSp(B(L),F(T))\An,,
_ Z e(H,B(L))ou, -
FC Ny
H'eSk(B(L),F(T))\An,
and
| etem = [ on=dum.
. Ot

where H' € A;, and hence there is a non-zero pairing if and only if L < H. U

The following result is a strightforward consequence of the formulas of Lemma
0.0.2

Corollary 3.3.3. The homomorphism ¢ maps ©i(Z) < Z(L).

Corollary 3.3.4. Let u € H*(Sal(A); Q) be the restriction of the class ur €
H*(T.; Q). Then ¢f(p) =0 if tk(L) > r —s.

Proof. This follows immediately from Lemma [3:3.2] since a product of more than
r —rk(L) classes of the type )\]g(L) is zero in H*(Sr, p(1); Q). O

The result of Lemma and Corollary has the following consequence in
cohomology.

Lemma 3.3.5. Let A be a toric arrangement in the torus T. Let L € C be a layer
of A. Consider the quotient arrangement Ay in T = T/Lo and the cellular map
®r, : Sal(A) — Sal(Ar). Moreover assume that 7 (F(T)) = F(T/Ly). Then for
any hypertorus H € Ap, the cohomology homomorphism

O} : H'(Sal(AL); Q) — H'(Sal(A); Q)
induced by ®;, maps as follows:
(I’f : wwL(H) — WeH.

Corollary 3.3.6. Let A be a toric arrangement in the torus T'. Let L € C be a layer
of A. Consider the quotient arrangement Sal(Ar) in T = T/Ly and the cellular
map ®r, : Sal(A) — Sal(Ar). Moreover assume that nr,(F(T)) = F(T). Then for
any layer'Y € C, if we consider the cohomology map induced by the restriction

@L‘ : SY,F(Y) g SWL(Y)JTL(F(Y))

the following holds: for any hypertorus H € A such that Y ¢ H and L ¢ H we
have

r " (W (i) (7L (V) = wr (V).
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Proof. This follows immediately from the previous lemma using the commutativity
of the diagram

SYF () °—> Sal )

Prp(Y)

SrL () rL(F(Y)) — S 1(74 )-
0

Recall that we can assume the arrangement A to be totally ordered and we
actually fix such an ordering.

Given any d — r-dimensional layer L € C, in the torus T of dimension d, we can
consider the linear arrangement A[L].

The ordering of A induces an ordering of A[L]. For every element of the nbc-
basis associated to the arrangement A[ L] we can consider the corresponding ordered
subset S = (H;,,...,H; ) c A.

We will write wg for the product wg, ---wpy, € H"(M(A);Q).

Corollary 3.3.7. Let A be a toric arrangement in the torus T' of dimension d. Let
L € C be a layer of A of rank r. Consider the quotient arrangement Sal(Ayr) in
T =T/Lg and the cellular map @y, : Sal(A) — Sal(Ayz). Assume that 7, (F(T)) =
F(T).

Let S = (H;,,...,H;.) be an element of the nbc-basis of A[L].

Let a € H*(Sal(AL); Q) be a class such that o — Wrp(s) Testricts to zero in
H*(S,(1); Q) and « restricts to a class in I(f/) c H*(S3;Q) for I # 7r(L).

Then we have that the class ®1*(a) —wg restricts to 0 in H*(Sr; Q) if np(L') =
(L), that is if L' € L, and ®1,*(«) restricts to a class of Z(L') in H*(Sr; Q) if
7TL(L/) # WL(L).

Proof. The result follows from Corollary by multiplicativity. O

Remark 3.3.8. The cohomology ring H*(Sal(.A);Z) is a free Z module (this has
been proved in [dD15], but follows also from [CD17, Rmk. 6.1.1]).

Lemma 3.3.9. The cohomology ring H*(S1;Z) is a module over H*(T;Z) gener-
ated by the restriction of the classes wg for S € nbe(A[L]).

Proof. The lemma follows from [CDI7, Thm. 4.2.3], where the homotopy equiva-
lence

@Fo 3SL,F g |F(.AL)| X Sal(.A[L])
is given. Since the projection on the first component of © f, is the projection Sg, 5 —
L. induced by Sal(A) — T, we have that the cohomology of S;, r is a H*(T';Z)-
module generated by generators of the Orlik-Solomon algebra H*(Sal(A[L]);Z).
Finally the following hold:

a) The homology classes &y are non-trivial (in fact their image in Sal(Ag) is
noN-zero).

b) For H o L the homology classes &y have a representative in Sy, p.
In fact, for every G € F(AL) the arrangement A[G] contains H and hence in
particular a face W supported on H. Then we can consider the morphism m
of F(A) that arises from the order relation G < W in F(A[G]) (ensuring that
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F,, = W). Thus we see that the complex S¥(A[G]) contains the subposet Q™
of Remark 2.3.2]

c¢) The classes Wy project to trivial classes in T, = Sr.

d) If B is the essentialization of A\{H}, the classes @y maps to trivial classes in
Sal(B) (this claim follows directly from Lemma[3.1.11] and Remark [3.1.11| when
A and A\{H} have the same rank, otherwise from Lemma [3.1.6]).

Hence we have that the classes wy (L) for H S L, that are the restrictions of the

corresponding classes Wy to Sp, are the standard generators of the Orlik-Solomon
algebra H*(Sal(A[L]);Z). O

3.4. Group action and the cohomology ring.

Definition 3.4.1. Let A be a toric arrangement in a torus 7. Let L € C.(A) a
layer and let S € nbc(A[L]). We define the subarrangement Ag < A as the set of
hypertori of A associated to the elements of S.

Definition 3.4.2. Let A be a toric arrangement in a torus 7. We define the
stabilizer of A as the group G < T given by

G:={geT|VH e A,gH = H}.

and the essential stabilizer of A as the group G of the connected components of G.
Hence G := G/Gy, where Gy is the connected component of the identity of G.

Given a layer L € C.(A) and an element S € nbc(A[L]) we write Gg (resp. Gg)
for the stabilizer (resp. essential stabilizer) of Ag.

Remark 3.4.3. We notice that if A is essential then G is discrete and we have
G ~ (G. In general, by choosing a direct summand of Gy in T we get a lifting G — G.
Hence we can always identify G with a subgroup of T' that acts by multiplication
on the layers in C(A).

Proposition 3.4.4. Let A be an essential arrangement in a torus T of dimension
d. Let L € C, alayer of rank r = 0 and let S € nbc(A[L]) of length r. For a layer of
Y € C(A) let Y be the smallest layer in C(Ag) containing Y. There exists a unique
cohomology class wg 1, € H"(Sal(A); Q) such that for every layer of Y € C(A) and
for every face F € F(Ag) with supp(F) =Y we have:

i) If LY then ws — mwﬂ% restricts to 0 in H" (Sy,r; Q);

i) If LEY then ws, , restricts to 0 in H"(Sy.r; Q).

Proof. We prove our statement by induction on d and r, considering the following
cases.

a) [d = 0] For L =T and S = J we can just set wg  as the constant class
1 e H%(Sal(A); Q).

b) [d =1, r = 1] In this case the result is trivial as we can set wg 1 = wy.

¢) [d > 1,7 < d] Suppose now that dim7T = d > 1. We can assume that the
statement is true for any essential arrangement in a torus 7’ with dim 7T’ < d.
Then if rk(L) = r < d the statement follows also for dim7 = d. In fact,
given S = (H; H;,) € nbc(A[L]) of length r, we can consider the quotient

"

arrangement Ag : ./LS/LO, the layer L := L/Lg € C,.(As) and the element

S :=7m1(S) € nbe(As[L]). By induction the class wg - exists and we can set

ws,r, 1= 7 (w5 1)-
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ws
[Stabg_ (n2 (V)]
71 (Y), that is, if L < Y, and wg 7 restricts to 0 in Sy, (v g if L & 7 (Y), that
is, if L € Y. Hence, since Gg ~ Gg, according to Corollary we have that
ws
| Stabgg (V)]

In fact by induction, wgz — restricts to 0 in Sy, (yy g if L ©

Ws,L

restricts to 0 in H*(Sy r; Q) for all Y, F such that L € Y and wg 1, restricts to
0 in H*(SYI’FI;Q) if L g ?

[d > 1,7 = d] First we consider the case when A = Ag. Since in this case the
linear arrangement Ag is isomorphic to a boolean arrangement, it is enough to
consider a single chamber By € T (Ap) and to set F(Y) = By n Yy, because By is
adjacent to every hyperplane in Ag. Hence the results stated in [CDI7, Thm. A
and B] hold in this special setting. In particular from [CD17, Thm. A] we can
choose a class wg , € H"(Sal(A); Q) such that wg — wg restricts to zero in
Zer(L) (and hence in H" (S, p1); Q)) and wg, 1, restricts to zero in Z;/k(y) for
Y # L. From the definition of coherent elements (see [CD17, Def. 2.3.4]) and
from [CD17, Thm. B] we have that ws 1, restricts to zero in H"(Sy, p(yy; Q) for
Y # L. Hence wg,, satisfies the required conditions i) and ii) when F' = F(Y).

Recall that for g € Stabg, (Y") we have a multiplication map g : Y — Y that
from Lemma [3.1.10] is homotopic to the identity map and hence induces the
identity map on H*(Sy ).

We need to prove that i) and ii) are satisfied also for every complex Sy ,
with F' % F(Y). This is trivially true for Y = L, since in this case F' = F(Y)
is the only possible face in F(Ag) with supp(F) = Y. When Y # L we can
consider the class

wipi= ), gtwsse H*(Sal(A); Q).

geStabg 4 (Y)

Let S = 57 u Sy, where the elements of S; are the elements of S that contains
Y. Let € € {£1} be the sign such that wg = ews,ws,. Consider the map
®g, : Sal(A) — Sal(Ag,). We claim that

(8) Wi, = €@%, (W5 (v) )5

The equality follows checking that the two terms agree when restricted to
Sw,rw) for every W e C(Ag). In fact we have:

% Y\ _ ws
Avs) = TStabg, (W)

if L < Stabg,(Y).W and

- | Stabg, (Y) n Stabg, (W)]

¢*W(W§L) =0
otherwise. On the other side we have
wg ws
o (eDE (we ws,) = € L ws, =
PS50 00 )95) = T ey W% ™ TStabag (my (7))

if 7Ty(Y) < Wy(W) and

P (€@, (W?l,wY(Y))WSz) =0
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otherwise. The equality

| Stabg (Y') n Stabg, (W)| 1
[ Stabg, (W) [Stabg_(my (W))]

follows since the kernel of the surjective homomorphism
Stabg, (W) — Stabgﬁ(ﬂ'y(W))

is exactly the subgroup Stabg, (Y) n Stabg, (). Moreover the two conditions
L < Stabg, (Y).W and 7wy (Y') € 7y (W) are equivalent. In fact my (L) = my (V)
and 7y (Stabgg (Y).W) = my (W) and this proves that the first condition implies
the second one. Since 7y (W) is the quotient by Yj of the smallest layer W of
Asg, containing W, the second condition means that Y < W and then L, which
is a point of Y, is contained in Stabg, (Y'). W, hence the second condition implies
the first. Then we have proved Equation . In particular we have by induction
that for every face F' € F(Ap) such that supp(F) = Yj the class wg 1, restricts
in H*(Sy,r) as m%“;ﬁ and this proves the proposition if A = Ag.

If A # Ag we can consider the map Sal(A) — Sal(Ag) induced by the
inclusion M (A) < M(Ag) and the result follows applying Lemma and
Remark B.1.12 O

Theorem 3.4.5. Let A be an essential toric arrangement in T'. The homomor-
phism of algebras
@ L H*(Sal(A - P H*(S;Z
LeC(A) LeC(A)

18 injective.

Proof. Let R be a ring and let Zr (resp. Jgr) be the ideal of A%, := H*(Sal(A); R)
(vesp. By := @prec(a) H*(SLiR)) generated by the restriction of HYT;R) ~
H'(Sr;R). Note that Zp and Jg are graded ideals with respect to the cohomologi-
cal graduation and we will write (Zr); (resp. (Jr);) for the graded component of Zr
(rsp. Jgr) in A] (resp. B ). Let Gr(Ag) and Gr(Bg) be the associated bi-graded
groups, where we write Gri(A%) (resp. Gr;(B%)) for (Th/Th); (resp. (Th/Ti);).

The map @ := @pec(a)¥r induces an homomorphism of bi-graded groups

@ : Gry(A}) — Gry(Bh).
As recalled in Remark the cohomology groups H*(Sal(A); Z) and H*(Sr;Z)
are torsion free and hence Az (resp. Byz) includes in Ag (resp. Bg). Moreover the
injectivity of ® implies the injectivity of the map ®. As a consequence of these two
facts, in order to prove that @ is injective for R = Z it will be enough to prove that
® is injective when R = Q.

This can be seen showing that Gri(Afé) and E(Gri(AfQ)) have the same dimen-
sion. In fact if we fix L € C(A) with rk(L) = | we have that Gr;(H'*(S;;Q)) ~
HY (M(A[L]); Q) ® H (L; Q). For a given S € nbc(A[L]) with |S| = [ and X €
HY(T;Q), the class wg 1, - A belongs to Grz(AH’)

It follows from Proposmon“ 3.4.41that wg 1, maps to wg(L)®A in the graded piece
Gry(H4(S15 Q).

Moreover for L' # L with rk(L") =1’ we have that wg ;, maps to 0 in the graded
piece Gr;(H'*(S1;Q)). Again this follows from Lemma and Proposition
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3.4.4] since: either at least one of the hypertori H, for s € S does not contains L’
and then wg 1 maps to Jg, either L' & L and hence wg(L) has dimension less then
I in H*(SL/; Q)

As a consequence the images of the classes wg 1, - A for L € C(A), S € nbe(A[L])
with |S| = rk(L) and X in a basis of H*(L;Q) in Gr(Bg) are linearly independent
and the rank of the image of Gr(Ag) in Gr(Bg) is greater or equal to

1247 dim B (M (A[L]); Q)
LeC(A)

that is the dimension of Ag (see [Loo93, [DCP05]). Hence ® is an injective homo-
morphism. O

Proposition 3.4.6. The classes wg 1 defined in Proposition are integer
classes.

Proof. Following the same pattern of the proof of Proposition [3.4.4] we can prove
the result by induction. The claim follows immediately for the cases a) (since 1 is
an integer class) b) (since the classes wy are integer classes) and c¢) since the pull
back of an integer class is an integer class.

Concerning case d), since the restriction of an integer class is an integer class, we
can assume that A = Ag. We will show that for a given layer Y such that L < Y and
| Stabg, (Y)| # 1 the restriction of the class wg 1 in H*(Sy r; Q) is an integer class.
We consider the group N := Stabg, (Y) and the quotient Sal(.A) — Sal(A)/N. We

have a commutative diagram

Sal(A) —— Sal(A)/N

I ]

Sy) F % Sy} F /N
We have an homotopy equivalence

SYJ:* # SY,F/N

Sal(A[Y]) x Y —— Sal(A[Y]) x (Y/N)
Let m = | Stabg (Y')]. Notice that when ¢ = dim(Y") the cohomology map
H'(Y/N;Q) — H'(Y;Q)
induced by the m-fold covering Y — Y /N is the multiplication by m.

Recall that we are assuming that r = rk(T) = rk(A) = |S| and hence i =
dimY =r =1k(Y).

The class wg € H"(Sal(A);Z) is N-invariant and hence it is the pullback of an
integer class wg € H"(Sal(A)/N;Z). Moreover the class wg restricts to a class 3 €
H"(Sy,r/N;Z) =~ H*¥) (Sal(A[Y]); Z) ® H'(Y; Z). This implies that ¢} ,(wg) =
mxr(B) is m-times an integer class in H"(Sy,r;7Z) and hence wg 1 restricts to an
integer class in Sy p. From the injectivity of the map

H*(Sal(A); Z) — P H*(Sy; Z)
YeC
it follows that the class wg 1, is an integer class. ([l
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Theorem 3.4.7. Let A be an essential toric arrangement in T.The integer coho-
mology ring H*(Sal(A);Z) is generated as a module over H*(T;Z) by the classes
wg,r, for L e C(A) and S € nbc(A[L]).

Proof. Since we have proved in Theorem that the map ® = @rec(a)prL is
injective over Z, it will be enough to show that the image of the homomorphism of
algebras
(—D (Y2 S H*(Sal <—D H SL,
LeC(A) LeC(A)
is the H*(T'; Z)-module generated by the restrictions of the classes wg 1, for L € C(A)
and S € nbc(A[L]).

We keep the notation of the proof of Theorem Let A, the sub-H*(T'; R)-
module of Ar generated by the classes wg 1, for L € C(A) and S € nbc(A[L]). Using
the injectivity of ® : A¥ — B2 and the fact that the surjectivity of ® : Gr(A4%) —
®(Gr(Ag)) implies the surjectivity of ® : A% — ®(Ag), in order to prove that
Al = Ay we will show that

P(Gr(47)) = ®(Gr(Ag)) n Gr(Bz).

In fact, since we have the inclusions ®(Gr(4%)) < ®(Gr(Az)) = ®(Gr(Ag)) N
Gr(Bz), the equality between the first and the last term implies the equality between
the first and the second one. As we have seen in the proof of Theoremm7 P maps
the class of wg, 7, in Gro(H™ (") (Sal(.A); Z)) to the class wg (L) in Gro(H™*)(Sy; Z).
Since H*(S1;Z) ~ H*(M(A[L]); Z) ® H*(L) we have that the set of classes wg (L)
for S € nbc(A[L]) is a set of generators of

@GI‘ Hrk(L +18 Z @Hrk L) [ ]),Z)@HZ(L)

as a H*(T; Z)-module. The sum of these modules, for L € C(.A), is the intersection
®(Gr(Ag)) n Gr(Bz). Hence the claim follows. O

Example 3.4.8. As an example of our result we provide an explicit description of
the cohomology of the complement of the toric arrangement A = {Hy, Hy, Ho} in
T = (C*)? given by:

Ho={zeTlzo=1}; Hy={zeT|2z=1}; Hy={zeT|n =1}

The associated hyperplane arrangement Ag in V' = R? is given by the corresponding
hyperplanes

Wo={xeV]rg=0} W;={xeV|ry+2x =0}; We={zeV|x; =0}

We consider in T (Ag) the chambers By = {z € Vl]zg < 0,29 + 2z; > 0} and
By = {x € V|x; > 0,29 + 221 < 0} (see Figure [I). The poset of layers C(A) is
given by the elements T, Hy, Hy, Hy and the points P = {(1,1)}, @ = {(1,-1)}. In
order to define the subcomplexes Sy, for L € C(A) we need to choose the chamber
B(L). We can do this as follows: B(Hy) = By, B(L) = By for L # Hy. Moreover
for H € A choose 7C : B(H). As a basis Br(.A) we can choose the set {/\go,/\ 21,
All the other choices of basis are natural. In Table [[l we describe the restriction
of each generator of the cohomology of Sal(A) to each one of the subcomplexes
St = Sr.rr), for L € C(A). Cells are empty when a class restricts to zero. The
multiplicative structure of the cohomology of Sal(.A) is induced by the multiplcative
structure on each subcompex.
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HO Q W(]

By

H1 Wl
Ho> Wa
B,

FIGURE 1. The real picture of the toric arrangement A of Example
(on the left) and of the corresponding central arrangement Ag
(on the right).

Sal(/l) ST SHo SH1 SH2 Sp SQ

A0 TR AR | AR

D e

WH, WH, WH, WH,

WH, WH, 2)\1;? WH, WH,

WH, WH, WH,

W{0,2},P WHyWH,

w(1,2},P Agwa2 WH, WH,

Wi1,2},Q WH, WH,
TABLE 1

4. REPRESENTATIONS OF ARITHMETIC MATROIDS

In Section 7 of [CDI7] we investigate the dependency of our presentation of
from the combinatorial data. There, we claim the following result (where the last
qualifier was implicit in the paragraphs preceding this theorem in [CDI7]).

Theorem 4.0.1 ([CD17, Thm. 7.2.1]). If an arithmetic matroid with a basis of
multiplicity 1 is representable by a matriz A, then, if we fix such a basis, the matriz
A is unique up to sign reversal of the column wvectors and up to a unimodular
transformation from the left.

The proof given in the paper is not correct. As explained in [Lenl9|, the argu-
ment of the proof in case b) fails for example for the matrix

1 001 0 1
X=101011 O
001 0 1 —1

since it is not possible to make the bottom right entry positive preserving all other
signs while in the proof this is assumed to be possible.
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However, the claim of Theorem 7.2.1 of [CD17] is true: a correct proof follows

from the results by Lenz [Lenl9, Thm. 1.1] and in more generality from Pagaria
[Pagl9, Thm. 3.5].

5. SUMMARY OF CORRECTIONS

We now summarize the modifications in the body of [CD17] that are required by

the corrections in this Erratum. The details for the corrections of §2—6 are given

in

§2

§3
84

§5
56

§7

Sections The details for the correction of §7 are given in Section [4]

The rings A(A) and B(A) are isomorphic to a graded algebra associated to
a filtration of H*(M(A);Z) induced by the Leray spectral sequence, but in
general they are not isomorphic to the ring H*(M(A); Z) itself. The statements
of Thm. A and B should be replaced by Prop. 3.4.4, Thm. 3.4.5, Thm. 3.4.7 of
this Erratum.

The results in this sections holds without any change.

The statements previous to Thm. 4.2.17 holds. Thm. 4.2.17 holds only if the
subcomplexes Sy, and Sy, are defined choosing Fy = B n Lo and F}, = B n Lj,
for a common chamber B. Notice that Def. 4.2.16 require to choose a face Fj
and this is not explicit in the notation of Sy. Lem. 4.2.18 and Sch. 4.2.19 holds.
Lem. 5.1.2, Thm. 5.1.3 and Thm. 5.1.5 hold. Cor. 5.1.6 and the following
statements are false.

Lem. 6.1.2 and Thm. 6.1.3 hold. Thm. 6.2.4 is false. We refer to |[CDD™18§]| for
a description of the cohomology of the complement in the general case.

Thm. 7.2.1 holds, but the proof given in [CD17] is wrong. Example 7.3 gives only
a description of the graded ring associated to the filtration of the cohomology
of the complement of the toric arrangement.
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