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Abstract. We point out two errors in the paper “The integer cohomology
algebra of toric arrangements”, Advances in Mathematics, Vol. 313, pp. 746–

802, 2017. The main error concerns Theorem 4.2.17. In particular the Diagram

(8) does not commute in general. This invalidates the description for the
ring structure of H˚pMpAq;Zq given in Theorem A and B. Still, under some

restrictive hypotesis on A the results of Theorem 4.2.17 holds. We show a

workaround to provide a description of the cohomology ring H˚pMpAq;Zq

when A is a real complexified toric arrangement. The second error concerns

the proof Theorem 7.2.1. The claim holds, but the proof is incorrect. We

refer to a counterexample for the argument given in the proof and we provide
references for a correct proof.
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1. Presentation of the cohomology algebra: the incorrect result

The claim of Theorem 4.2.17 in [CD17] does not hold for all choices of the basis
chamber upon which relies the construction of the subcomplexes SL. In particular,
for some such choice the Diagram (8) of [CD17] does not commute. This invalidates
the description for the ring structure of H˚pMpAq;Zq given in Theorem A and B: in
particular, the rings ApAq and BpAq are isomorphic to a graded algebra associated
to a filtration of H˚pMpAq;Zq induced by the Leray spectral sequence, but in
general they are not isomorphic to the ring H˚pMpAq;Zq itself.

Remark 1.0.1. The claim Theorem 4.2.17 in [CD17] does hold if the facets F0 and
F 10 that define the complexes SL :“ SF0

and SL1 “ SF 10 (see [CD17, Def. 4.2.16.])
are adjacent to the same chamber B0 of A0.
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In particular, under the restrictive hypotesis on A that there exists a chamber
B0 of the arrangement A0 such that for every layer L of A0 the support of the
intersection LXB0 is L, the results of Theorem A and B of [CD17] hold.

In the following Sections 2 and 3 we show a workaround that allows us never-
theless to provide a description of the cohomology ring H˚pMpAq;Zq as a subring
of the direct sum ‘LPCH

˚pSL;Zq when A is a real complexified toric arrangement.
Unfortunately the workaround presented here does not apply to non real com-
plexified toric arrangements. Hence in this erratum we will assume that all toric
arrangements are real complexified.

For a general toric arrangement A, not necessarily real complexified, a descrip-
tion of the ring H˚pMpAq;Zq in the style of the Orlik-Solomon algebra of hyper-
plane arrangements, obtained using other methods, can be found in [CDD`18].

2. Two classes of subcomplexes

We aim at defining (cellular) representatives for certain homology classes. Intu-
itively, these classes will be of two types.

The first type of classes, called pλMB will represent cycles that are parallel to
1-dimensional layers M and lie in certain subcomplexes SL with M Ă L (more
properly in SL,F0 , with M Ă L, under certain conditions on F0, L and B, see
Remark 2.2.9 below). The second type are classes pωH , representing loops around a
codimension-1 layer H P A.

2.1. Setup. We start by recalling the setup and some notation from the original
article.

Let A denote a finite toric arrangement in the complex torus T . Recall that a
layer of A is any connected component of an intersection of elements of A. We call
C the set of all layers, partially ordered by reverse inclusion. This poset is ranked
(by the layer’s codimension) and we denote by Ci the set of elements of C with rank
i. To any L P C we can associate the arrangement AL “ tH P A | L Ď Hu in T
and the arrangement AL “ tH X L | H R ALu determined by A in the torus L.

A central tool is the category FpAq, whose objects are all faces of the induced
(polyhedral) cellularization of the compact torus and where morphisms F Ñ G
correspond to the boundary cells of G attached to F (see [dD15, Rmk. 3.3]. Given
any F P FpAq, there is a unique minimal layer containing F , called the support of
F and denoted by supppF q. We will sometimes write AF for AsupppF q and AF for
AsupppF q.

To every face F P ObF we associate the “local” real hyperplane arrangement
ArF s (this is the real part of the (complexified) hyperplane arrangement defined by
A in the tangent space to T at any point in the relative interior of F ). Moreover,
associated to A we consider an “abstract” arrangement of hyperplanes in Rd that we
call A0, which can be thought of as the union of all ArF s where F ranges in ObF
(omitting repetition of hyperplanes). Key is the fact that, for every F P ObF ,
ArF s is a subarrangement of A0. In particular, for every layer L P C there is a
subspace XL P LpA0q defined as the intersection of the hyperplanes associated to
hypertori containing L. Given any F P FpAq, we let XF

L be the smallest flat of
ArF s containing XL.

As is customary for arrangements of hyperplanes in real vector spaces, after
choosing a “positive side” of each hyperplane we can associate to every point x
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in the ambient space a sign vector γx P t0,`,´u
hyperplanes whose value on any

hyperplane H is 0,`,´ according to whether x lies on H, on the positive side of
H or on the negative side of H. A face is then the set of all x with a fixed sign
vector. The set of all faces is partially ordered by inclusion of topological closures.
The top-dimensional faces are called chambers.

For every F we will thus consider the poset of faces FpArF sq where G ď K if
G Ď K, and the set T pArF sq of chambers. For every morphism m : F Ñ G there
is a natural inclusion im : FpArGsq Ñ FpArF sq and in particular we call Fm the
image of the minimal element of FpArGsq (see [CD17, §4.1]).

Now for each arrangement ArF s one can construct the associated Salvetti com-
plex SalpArF sq, which models the homotopy type of the complement of the com-
plexification of ArF s. A natural construction of SalpArF sq is as the order complex
of the partially ordered set SpArF sq of all pairs rG,Cs with C P T pArF sq and
G ď C in FpArF sq, partially ordered via rG,Cs ě rG1, C 1s if CG1 “ C 1 (this
means: no hyperplane in ArG1s separates C from C 1, see [CD17, Def. 3.3.1]) For
each chamber C we consider the subposet SC Ď SpArF sq of all pairs rG,Ks such
that K “ CG where G ranges over FpArF sq. It will be useful to stratify SpArF sq
via the subposets SGpArF sq :“

Ť

CěG SC . For details on these constructions see
[CD17, §3.3].

Returning to the toric arrangement A, a model for the complement of MpAq :“
T z

Ť

A can be obtained from the diagram D on the index category FpAqop that
associates to every object F the poset SpArF sq and to every morphism m : F Ñ G
the order-preserving map Dpmq : SpArGsq Ñ SpArF sq, rG,Ks ÞÑ rimpGq, impKqs.
Then the ”Grothendieck construction”

ş

D gives an acyclic category that is ho-
motopy equivalent to MpAq. Crucial to our discussion will be a certain type of
subcategories of P D . For every Y P C and every F0 P FpA0q whose linear hull |F0|

is XY consider the subdiagram DY,F0
of D induced on the subcategory FpAY q of

FpAq by the subposets DY,F0pF q :“ SF0pArF sq. Then, we set SY,F0 :“
ş

DY,F0 .1

Definition 2.1.1. Given any chamber C P T pA0q and any F P FpAq we denote
by CpF q the unique chamber of ArF s containing C.

2.2. The cycles pλ.

Definition 2.2.1. Let A be an essential toric arrangement in a torus T of dimension
d. For every M P Cd´1 fix, once and for all, a chamber MC P T pA0q adjacent to
XM , and choose a minimal gallery in T pA0q

MC “ C0, C1, . . . , CkpMq “ opM0
p´MCq.

Here, for every face F Ď Rd of A0 we write ´F for the negative of F viewed
as a set of vectors in Rd. Moreover, if C is a chamber adjacent to XM , with
opXM pCq we mean the unique chamber such that C XXM “ opXM pCq XXM and
SpC, opXM pCqq “ AXM . In particular, note that SpC,´ opXM pCqq “ A0zAXM .

Remark 2.2.2. The choice of a different MC, say MC 1, would give a different
gallery, say C 10, . . . , C

1
kpMq. Let ρ :“ R1, . . . , Rh be a minimal gallery from C0 to

C 10. Notice that, since SpC0, C
1
0q Ď AXM , we have SpC0, C

1
0q X SpC

1
0, C

1
kpMqq “ H.

Thus the concatenation of ρ with C 10, . . . , C
1
kpMq is a minimal gallery, as is the

concatenation of C0, . . . , CkpMq with ρ̃ :“ opXM p´ρq.

1In the original paper this is Definition 4.2.6 and 4.2.8. Here we added the subscript Y for clarity.



4 FILIPPO CALLEGARO AND EMANUELE DELUCCHI

Given any face F ĎM , let

CF0 , . . . , C
F
kpM,F q

be an enumeration of the set tCipF qui“0,...,kpMq in increasing index order and call

WF
i the wall separating CFi from CFi`1 in ArF s.

Remark 2.2.3. Notice that the sequence CF0 ,W
F
1 , C

F
1 , . . . defines a minimal gallery

in ArF s, hence it does never cross any hyperplane in ArM s. In terms of sign
vectors (see [CD17, §3.2.1]), γCFi pHq “ γWF

i
pHq “ γMCpHq for all i and all

H P ArF s XArM s.

For every B P T pA0q, set

vipM ;B,F q :“ rCFi , C
F
i s for i “ 0, . . . , kpM,F q,

eipM ;B,F q :“ rWF
i`1, BpF qWF

i`1
s for i “ 0, . . . , kpM,F q ´ 1.

Now consider the subposet of SpArF sq induced on

PathpB;M,F q :“ tvipM ;B,F qui“0,...,kpM,F q Y teipM ;B,F qui“0,...,kpM,F q´1.

This poset has the following form:

v0pB;M,F q

e0pB;M,F q

v1pB;M,F q

e1pB;M,F q

v2pB;M,F q . . .

. . .

so that |PathpB;M,F q| is a topological path from v0pB;M,F q to vkpM,F qpB;M,F q.

Remark 2.2.4. Notice that if dimpF q “ 1, then kpM,F q “ 0 so PathpL;M,F q is
a single vertex which we will denote vpL;M,F q.

Moreover, and crucially, for any two B ‰ B1 we have vipM ;B1, F q “ vipM ;B,F q
for all i and eipM ;B1, F q “ eipM ;B,F q if and only if the affine span of Wi does
not separate B from B1 (hence BpF q from B1pF q). If we set

eipM ;B,F q :“ rWF
i , p´BpF qqWF

i
s

we can state more precisely

eipM ;B1, F q “

"

eipM ;B,F q if |WF
i | R SpB,B

1q

eipM ;B,F q otherwise

For every H P AF zAM there is a unique i such that |WF
i | “ H0, thus we can

define a subcategory ΞpH;B,F q:

(1)

eipM ;B,F q eipM ;B1, F q “ eipM ;B,F q

vi`1pM ;B,F qvipM ;B,F q

Definition 2.2.5. Let A be an essential toric arrangement in a torus T of dimension
d. For every M P Cd´1 and every B P T pA0q, define the induced subcategory of
ş

D on the vertex set

ΛMB :“
ď

FĎM

tpF,Xq | X P PathpB;M,F qu
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In order to understand the structure of the subcategory ΛMB let us first consider
the category FpAM q. Since it is the quotient of FppAæqM q by a regular action, Every
object P of FpAM q of dimension 0 is the origin of two arrows and every object G
of dimension 1 is the target of two arrows. Choose an object P0 of dimension 0
and consider the two arrows, say m1,m2 , originating in P0. Then Fm1

“ ´Fm2
in

FpArP0sq and in particular exactly one of these – say, m2 – is adjacent to ´BpP0q.
Call G0 the target of m2, and call P1 the origin of the other nontrivial morphism
ending in G0. In this way we can naturally label the objects of FpAM q as

P0 Ñ G0 Ð P1 Ñ G1 Ð . . .Ñ G`pMq Ð P0.

Lemma 2.2.6. In the category
ş

D we have, for all i modulo `pMq, arrows

pGi, vpB;M,Giqq Ñ pPj , vlpB;M,Pjqq

if and only if either j “ i`1 and l “ 0, or else j “ i and l “ kpMq. (The index-less
vpB;M,Giq is the only possible r.h.s. associated to Gi, see Remark 2.2.4.)

Corollary 2.2.7. The category ΛMB is of the form

pP0, v0pB;M,P0qq

pP0, e0pB;M,P0qq pP0, ekpM,P0q
pB;M,P0qq

pP0, vkpM,P0q
pB;M,P0qq

pG0, vpB;M,G0qq

pP1, v0pB;M,P1qq

pP1, e0pB;M,P1qq

. . .. . .

In particular, it is a poset homeomorphic to S1.

Lemma 2.2.8. The homotopy class of the path ΛMB does not depend on the choice
of the chamber MC in Definition 2.2.1

Proof. Fix a face F ĎM . The elements of PathpB;M,F q are, by definition, cells of
the Salvetti complex of ArF s. In this interpretation, they correspond to a minimal,
positive path from v0pM,B,F q to vkpM,F qpM,B,F q. Now consider the same con-

struction with a different choice for the chamber MC, say MC 1, as in Remark 2.2.2,
and let PathpB;M,F q1 be the obtained minimal path. In the same way, the min-
imal gallery ρ “ R1, . . . , Rh and ρ̃ of Remark 2.2.2 defines positive minimal paths
ρF and ρ̃F in SalpArF sq such that the concatenation of ρ with PathpB;M,F q1 is
a positive minimal path. In particular, the paths pρ̃F qPathpB;M,F qpρF q´1 and
PathpB;M,F q1 are homotopic in the Salvetti complex of ArF s. Call hF this ho-
motopy.

Now consider the entirety of ΛMB and pΛMB q
1 constructed choosing MC and MC 1,

respectively. Notice that, if G has dimension one, then pG, ρGq “ pG, ρ̃Gq. More-
over, the homotopies hF are carried by cells of pF,SalpArF sqq, and thus the union
of such cells defines a homotopy between the concatenation of the PathpB;M,F q1

(i.e. pΛMB q
1) and the concatenation of the pρ̃F qPathpB;M,F qpρF q´1.
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pP0, v0pB;M,P0qq

pP0, e0pB;M,P0qq pP0, ekpM,P0q
pB;M,P0qq

pP0, vkpM,P0q
pB;M,P0qq

pG0, vpB;M,G0qq

pP1, v0pB;M,P1qq

pP1, e0pB;M,P1qq

. . .. . .

pP0, v0pB;M,P0q
1q

pP0, e0pB;M,P0q
1q pP0, ekpM,P0q

pB;M,P0q
1q

pP0, vkpM,P0q
pB;M,P0q

1q

pG0, vpB;M,G0qq
1

pP1, v0pB;M,P1q
1q

pP1, e0pB;M,P1q
1q

. . .. . .

hP0 hP1ρP0 ˜ρP0 ρG“ ρ̃G ρP1

�

Recall from [CD17, Thm. 4.2.3 and Def. 4.2.6] that for every fixed layer L and
every face F0 P FpA0q whose support is L there is a subcomplex SL,F0 of SalpAq
(notice that such complexes were indexed simply by F0 in [CD17] – here we need a
more refined notation. The homotopy type of SL,F0

is that of FpALq ˆ SpArLsq.

Remark 2.2.9. If M is a one-dimensional layer contained in L, we have ΛMB Ď

SL,F0 if F0 “ B X L0

Definition 2.2.10. Let rΛMB s P C1p|
ş

D |q denote the cycle supported on ΛML
uniquely determined by setting the coefficient of pv0pB;M,P0q Ñ e0pB;M,P0qq

equal to 1.

For the following ”basis-change” formula we need to define, for any F P FpAq
and any two chambers B,B1 P T pA0q, the set

(2) SF pB,B
1q :“ tH P AF | H0 separates B from B1u.

Proposition 2.2.11. Let B,B1 P T . Then

rΛMB s ´ rΛ
M
B1s “

ÿ

PĎM

ÿ

HPSP pB,B1qzAM

rΞpH;B,P qs

where rΞpH;B,P qs is the 1´cycle determined by the subcategory defined in (1) with
the orientation given by setting the coefficient of vipM ;B,P q Ñ eipM ;B,P q equal
to 1.

2.3. The generators pωH .

Definition 2.3.1. For every H P A choose, once and for all, HC P T pA0q. For
every m : F Ñ G P MorFpAHq with supppGq “ H, let C1 :“ HCpF qFm , C2 :“
p´HCpF qqFm be a numbering of the two chambers of T pArF sq adjacent to Fm.

Ωpmq “

pF, rC1, C1sq

pF, rFm, C1sq

pF, rC2, C2sq

pF, rFm, C2sq

Ď SpArF sq

Remark 2.3.2. The case where m “ idG : G Ñ G is instructive. In this case,

Ω
pidGq
H is the order complex of the subposet

ΩpidGq “

pG, rC1, C1sq

pG, rG,C1sq

pG, rC2, C2sq

pG, rG,C2sq

“ SpArGsq
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Definition 2.3.3. Let rΩpmqs denote the 1´cycle supported on Ωpmq uniquely
determined by the orientation given by setting the coefficient of ppG, rC1, C1sq Ñ

pG, rG,C1sqq equal to 1.

Definition 2.3.4. Let H P A and L P C. Define

εpH,Bq :“

"

1 if H0 R Sp
HC,Bq

´1 if H0 P Sp
HC,Bq

Lemma 2.3.5. We have the following relations in homology:

(i) For m : F Ñ G, rΩpmqs » rΩpidGqs

(ii) rΩpFÑGqs » rΩpFÑG
1
qs when both G,G1 of maximal dimension in FpAHq.

(iii) rΩpPÑW
M
i pP qqs “ εpH,BqrΞpH;B,P qs if supppWP

i q “ H.

Proof. First notice that if m : F Ñ G with G of codimension 1, then (e.g. by
checking Remark 4.1.1 and ff. in [CD17])

Ωpmq “ jmpΩ
idGq.

In particular the complex SalpAq, being obtained as a homotopy colimit, contains
the mapping cylinder of jm|SpArGsq in the form of the nerve of the subcategory

Ωpmq

pF, rC1, C1sq

pF, rFm, C1sq

pF, rC2, C2sq

pF, rFm, C2sq

ΩpidGq

pG, rC1, C1sq

pG, rG,C1sq

pG, rC2, C2sq

pG, rG,C2sq

jm

which gives a homotopy inside SalpAq between ΩidG and Ωpmq that sends edges to
“corresponding edges”. Thus (i) follows.

Part (ii) follows analogously by a homotopy between the two subcomplexes in-

side the subcomplex SGpArF sq “ SG1pArF sq of SalpAq (see the discussion around
Proposition 3.3.5 in [CD17]).

For part (iii) notice that, for any B, ΩpPÑW
P
i q and ΞpH;B,P q are the same

subposet. The associated chains differs by a sign depending on whether B is on the
same side of H0 as HC. �

Corollary 2.3.6. For every H P A the homology class of any rΩpmqs does not
depend on the choice of m : F Ñ G as long as supppGq “ H.

Definition 2.3.7. For every H P A let us denote by

pωH P H1pSalpAq,Zq

the homology class of (any) rΩpmqs with m : F Ñ G and supppGq “ H.
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2.4. The generators pλMB .

Definition 2.4.1. Let pλMB be the homology class of rΛMB s.

Notice that this homology class is well-defined and independent on the choice of
MC in Definition 2.2.1 since by Lemma 2.2.8 the paths ΛMB obtained with different
choices of this chamber are homotopic.

Proposition 2.4.2.

(3) pλMB ´ pλMB1 “
ÿ

FĎM
HPSF pB,B

1
qzAM

εpH,BqpωH

Proof. Lemma 2.3.5, that allows us to eliminate the dependency on P in the right-
hand side of the claim of Proposition 2.2.11, and to rewrite it as in this Proposition’s
claim. �

3. Cohomology and recursion

3.1. Quotients of toric arrangements and recursive construction.

Definition 3.1.1. Let A be a toric arrangement and let L P C a layer. Let L0 be
the coset of L that contains the identity of T . Recall that AL is the subarrangement
of A given by the hypertori that contains L. Consider the arrangement

AL :“ AL{L0 :“ tH{L0, H P Au in T {L0.

We define the quotient map

fL : MpAq ÑMpALq

as the composition πL0 ˝ iL of the inclusion

iL : MpAq ÑMpALq

and the projection

πL0
: MpALq ÑMpAL{L0q.

Definition 3.1.2. The quotient by L0 induces order-preserving maps

πL : CpAq Ñ CpALq and πL : FpAq Ñ FpALq

and the latter lifts to the natural order-preserving map

FpAæq Ñ FppALq
æq, F ÞÑ min

Ď
tG P FppALq

æq | F Ď Gu.

Remark 3.1.3. We note two elementary facts about sign vectors that can be
gathered directly from Definition 3.2.1 in the original paper.

(1) For all m P MorFpAq with source object K and every H P ArKsXFL we

have that γFπLpmqpH{L0q “ γFmpHq.

(2) For all G,K P ArF s and every X P LpArF sq we have pGXqpKXq “ pGKqX .

We see that the linear arrangement pALq0 is pA0qXL{XL, and in particular we
have a natural map

πL : FpA0q Ñ FpA0qXL » FppALq0q, F ÞÑ FXL .
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Similarly, for every F P FpAq, the arrangement ALrπLpF qs is the essentialisation
[OT92, Lem. 5.30] of the sub-arrangement of ArF sXFL Ď ArF s consisting of all

hyperplanes containing XF
L . Thus the map

πFL : FpArF sq Ñ FpALrπLpF qsq, K ÞÑ K{XL

is order preserving and surjective, and restricts to an isomorphism of posets

FpArF sXFL q Ñ FpALrπLpF qsq.

Thus we can identify SpALrπLpF qsq with SpArF sXFL q and [CD17, Def. 3.3.2] gives

a natural map

bXFL : SpArF sq Ñ SpALrπLpF qsq, rK,Cs ÞÑ rKXFL
, CXFL s

Lemma 3.1.4. For all layers L,

pπL, bX˚L
q : DpAq ñ DpALq

is a natural transformation.

Proof of Lemma 3.1.4. In order to check naturality pick anym : F Ñ G in MorpFpAqq
and rK,Cs P SpArGsq. With the definitions:

pF, rimpKq, impCqsq pπLpF q, rpimpKqqXFL , pimpCqqXFL sq

pπLpF q, riπLpmqpKGpLqq, iπLpmqpCGpLqqsq

pG, rK,Csq pπLpGq, rKGpLq , CGpLqsq

pπL,bXF
L
q

?
“

pπL,bGpLq q

pm,jmq

pπLpmq,jπLpmqq

and we need to prove equality of the two expressions on the top right-hand-side. It
is enough to prove that, for every K P FpArGsq,

iπLpmqpKGpLqq “ pimpKqqXFL in ArF sXFL .

This we do using the definition [CD17, Rmk. 4.1.1]. First consider the right-hand
side: it is defined by

(4) γpimpKqqXF
L

pHq “ γimpKqpHq “

"

γimpKqpHq H R ArGs
γKpHq H P ArGs

for all H P ArF sXFL .

In the same vein, the left-hand side is determined by

(5) γiπLpmqpKGpLq qpHq “

"

γFπLpmqpHq “ γFmpHq if H R ArGs
γK

GpLq
pHq “ γKpHq if H P ArGs

where we used Remark 3.1.3.(1). Now, with [CD17, Rmk. 4.1.1] we see that
γFmpHq “ γimpKqpHq for H R ArGs, completing the check of the identity between
the two sides of the required equality, as expressed in Equations (4) and (5). �

Definition 3.1.5. Call
ΦL : SalpAq Ñ SalpALq

the (cellular) map induced by the natural transformation of Lemma 3.1.4

We collect some properties on the behaviour of this map.
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Lemma 3.1.6. Let A be an essential toric arrangement in a torus T of dimension
d. Fix a layer L P C.

(1) For every M P Cd´1 such that XM Ď XL and every chamber B P T pA0q,
ΦLpΛ

M
B q is a single vertex. In particular the induced homology homomorphism

satisfies

ΦL˚ppλ
M
B q “ 0.

(2) Consider any G P FpAq with supppGq “ H P A.

If H Ě L, then ΦLpΩ
pidGqq “ ΩpidπLpGqq.

More generally, choosing πLpHqC :“ pHCqGpLq{L0 for every H P A, we have

ΦL˚ppωHq “

"

pωπLpHq if H Ě L
0 if H Ğ L

(3) For every layer Y and all F0 P FpA0q with

ΦLpSY,F0
q Ď SπLpY q,πLpF0q.

Proof. (1): With Remark 2.2.3, for all F Ď M , we have pCFi qXFL “ pWF
i qXFL

“

pMCqXFL for all faces F ĎM and 0 ď i ď kpM,F q. Therefore, comparing Definition

2.2.5 we see ΛMB “ tpπLpF q, r
MCXFL ,

MCXFL squ, a singleton.

(2): If H Ě L, then GpLq “ H. Direct computations of the image under ΦL for
each of the elements of ΩidG (Remark 2.3.2) and a glance at Definition 2.3.3 verify
the claims in this case. If H Ğ L, then GpLq is trivial and ΦLpΩ

pidGqq is a single
vertex.

(3): Recall that SY,F0
is defined as

ş

DY,F0
for a subdiagram DY,F0

of D on the

index category FpAY q [CD17, Def. 4.2.6]. Similarly, if D is the diagram giving

SalpALq, then SπLpY q,πLpF0q is
ş

DπLpY q,πLpF0q for a subdiagram over the index cat-

egory FpAπLpY q

L q. Since ΦLpSY,F0q “
ş

ΦLpDY,F0q, in order to prove the claim we

have to prove that ΦL restricts to a natural transformation DY,F0 ñ DπLpY q,πLpF0q.

Now obviously πLpFpAY qq Ď FppALq
πLpY qq, thus we are left proving that, for

every face F in FpAY q, bX˚L
pSF0pArF sqq Ď SπLpF0qpALrπLpF qsq.

Pick any rG,Ks P SF0pArF sq. By definition this means that K “ BG for some
chamber B P T pArF sq adjacent to F0. Now, since πFL is order preserving, πFL pBq is
adjacent to πFL pF0q and πFL pBqπFL pGq “ pBXFL qGXFL

“ pBGqXFL “ πFL pKq, where the

second equality uses Remark 3.1.3.(2). Thus, bXFL prG,Ksq P S
πLpF0qpALrπLpF qsq.

�

Corollary 3.1.7. Fix a chamber B P T pA0q and a layer L P CpAq. We have

ΦL˚pH˚pST,B ;Qqq Ă H˚pSπLpT q,πLpBq;Qq
In particular, for every M P Cd´1 we have

(6) ΦL˚ppλ
M
B q P H˚pSπLpT q,πLpBq;Qq.

Proof. The result follows from the following commutative diagram:

ΛMB ST,B SalpAq

SπLpT q,πLpBq SalpALq

ΦL

ϕT

ΦL

ϕπLpT q
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where the existence of the leftmost vertical arrow follows from Lemma 3.1.6, (3). �

Remark 3.1.8. Let L P C be a layer and consider the map ΦL : SalpAq Ñ SalpALq.
Let Y Ď L. We have that πLpLq “ πLpY q if and only if Y Ď L.

Remark 3.1.9. Let F P FpA0q with supppF q “ L0. Recall (see [CD17, Lem. 4.2.15])
that the subcomplex SL,F Ă SalpAq is homotopy equivalent to the product L ˆ
MpACrLsq, where MpACrLsq is the complement of the essentialization of the com-
plexified central linear arrangement ACrLs “ ArLs bR C. Hence the cohomology
ring of SL,F is generated in degree 1.

In particular the cohomology ring H˚pSπLpLq,πLpF q;Qq is the Orlik-Solomon al-
gebra generated by the restrictions of the forms ωπLpHq for L Ă H.

Lemma 3.1.10. Let A be a toric arrangement invariant by the action of an element
g P T . Then the multiplication by g induces a maps µg : SalpAq Ñ SalpAq and
µg : SL,F Ñ SL,F such that the following diagram commute

MpAq MpAq

SalpAq SalpAq

SL,F SL,F

g

µg

µg

Moreover the map µg : SL,F Ñ SL,F is homotopy equivalent to the identity.

Proof. The multiplication by g on T lifts to a translation τg in the universal cover
V » Rd of T , where the periodic arrangement Aæ is invariant under τg. In partic-
ular, τg leaves the poset of faces invariant and, hence, induces an automorphism
µæg of the Salvetti complex SalpAæq. Now τg commutes with the standard inclusion

ι : SalpAæq ãÑMpAæq as well as with the translations of Zd Ď Rd. Hence, so does µæg
and, since SalpAq “ SalpAæq{Zd (see [CD17, Thm. 4.1.3]), it induces the required
map µg and the top half of the diagram commutes. Now, the explicit form of µg as
a simplicial map on |

ş

D | is

µgpF, rG,Csq “ pgF, rG,Csq

for all F P FpAq and every rG,Cs P SpArF sq “ SpArgF sq. (Recall that, by
definition, ArF s “ ArLs where L is the layer supporting F , and so ArF s “ ArF 1s.)

In particular, this map restricts to every layer L and to µg : SL,F Ñ SL,F .
Under the homotopy equivalence SL,F » FpALq ˆ SpArLsq of [CD17, Lem. 4.2.15]
the map µg is the identity on the second component and the cellular map induced
by multiplication with g in T in the first component. But the continous map LÑ L
defined by multiplication with g is homotopic to the identity on L » FpALq - and
any homotopy accomplishing this can be composed with the identity to give a
homotopy between µg : SL,F Ñ SL,F and the identity. �

Lemma 3.1.11. Let A1 be a sub-arrangement of A of the same rank. The inclusion
MpAq ãÑMpA1q induces a map

Ψ : SalpAq Ñ SalpA1q
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that restricts to

Ψ : SL,F Ñ SL̃,F̃
where L̃ (resp. F̃ ) is the smallest layer of A1 containing L (resp. the smallest face

of A1 with support L̃ containing F ) such that the following diagram commute

MpAq MpA1q

SalpAq SalpA1q

SL,F S 1
L̃,F̃

Ψ

Ψ

Proof. Consider the arrangements Aæ and pA1qæ in V “ Rd. Clearly every open
cell F of the polyhedral stratification of V induced by Aæ is contained in a unique
cell spF q of the stratification induced by pA1qæ. This defines an order-preserving
function s : FpAæq Ñ FppA1qæq that induces a poset map SalpAæq Ñ SalppA1qæq,
rG,Cs ÞÑ rspGq, spCqs (consider any two chambers C, C 1 of Aæ: every hyperplane
separating spCq from spC 1q also separates C from C 1, therefore rG,Cs ě rG1C 1s
implies rspGq, spCqs ě rspG1q, spC 1qs). The canonical inclusion ξ : SalpAæq ãÑ

MpAæq sends every rG,Cs to a point in the (open and convex) set G` iC Ď V bC.
This inclusion gives a section of the deformation retraction r : MpAæq ÑMppA1qæq.
Therefore, the diagram on the left-hand side commutes, and hence so does, up to
homotopy, the one on the left-hand side.

MpAæq MppA1qæq

SalpAæq SalppA1qæq

r r

s

MpAæq MppA1qæq

SalpAæq SalppA1qæqs

Passing to the torus means considering the quotient by the action of the group
of translations Zd Ď V - call q : V Ñ T this map. Since s commutes with q, it
descends to a functor of acyclic categories

Ψ : SalpAq Ñ SalpA1q.

Since the inclusion ξ can be chosen equivariantly, the image under q of the above
diagram is a commutative diagram

MpAq MpA1q

SalpAq SalpA1qΨ

Now notice that for every F P FpAq we have F̃ “ qpspF æqq for every choice of F æ

in q´1pF q. Therefore, as a simplicial map between |
ş

DpAq| and |
ş

DpA1q|, Ψ is
given on vertices as

(7) ΨpF, rG,Csq “ pF̃ , rG̃, C̃sq.

It follows that Ψ restricts to a map SL,F Ñ SL̃,F̃ . �
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Remark 3.1.12. From the equality (7) we immediately deduce that for every H

such that H Č rL, the image Ψ˚ppωHq vanishes. In order to see this, notice that
we can choose a representative of the homology class pωH to be ΩidG Ď SL,F for

some face G of A supported solely on H. Now, if H is such that H Č rL, the image

Ψ˚ppωHq vanishes. In fact, in this case A1r rGs is the empty arrangement with a
unique face K. Now applying Equation (7) to the explicit expression of ΩidG given

in Remark 2.3.2, the image ΨpΩidGq is the single vertex p rG, rK,Ksq.
Let i : A1 ãÑ A be the inclusion map and assume that for H P A1 we choose

ipHqC P T pA0q as the smallest chamber in T pA0q that contains HC P T pA10q. Then

if H Ě rL with Equation (7) one checks that ΨpΩidGq “ ΩidĂG , thus Ψ˚ppωHq “ pωH .

3.2. Choices for a presentation. Let A be an essential toric arrangement in a
torus T of dimension r. In order to provide a presentation of the cohomology ring
H˚pMpAq;Qq from the combinatorial data we need to make some choices.

Choice 3.2.1. For every layer L P C we choose a chamber BpLq P T pA0q such that
the intersection BpLq XXL has maximal dimension and we set

F pLq :“ BpLq XXL P FpA0q.

Hence we will simply write SL for SL,F pLq.

Notice that the face F pT q is actually a chamber in T pA0q. When the setting

of the toric arrangement A is understood we will write ΛM for ΛMF pT q and pλM for

pλMF pT q. It follows from Remark 2.2.9 that we have ΛM Ă ST “ ST,F pT q. Hence pλM

is a homology class in H1pST ;Qq.

Choice 3.2.2. Once for all we choose elements M1, . . . ,Mr P Cr´1 such that

pBT pAq :“ tpλM1 , . . . , pλMru

is a basis of H1pST ;Qq.

This can be done since the arrangement is essential and hence the Q-span of
the defining characters is HompT,C˚q b Q » H1pST ;Qq. By duality the set of 1-
dimensional layers Cr´1 generate H1pT ;Qq. Moreover we have that the projection

ST Ñ Tc, which is a homeomorphism, maps pλM ÞÑ M . Hence the set tpλM | M P

Cr´1u generates H1pST ;Qq.

Definition 3.2.3. We define the following set:

pBpAq :“ tpλM1 , . . . , pλMru Y tpωH | H P Au

Clearly we also have that the set pBpAq is a basis of H1pSalpAq;Qq. In fact,
under the natural map SalpAq Ñ Tc (see [CD17, Rmk. 4.1.6]) each of the classes

pωH maps to a trivial homology class in Tc (in fact, all vertices of Ω
pidGq
H , see Remark

2.3.2, map to the same vertex of the celluarization of Tc) Moreover, since for each
H we have that ΦH˚ppωHq is a non-trivial class in H1pSalpAHq;Qq, while the cycle
ΦH1˚ppωHq is trivial in H1pSalpAH1q;Qq for H 1 ‰ H (see Lemma 3.1.6) we have that
the classes pωH are linearly independent. Finally, since we have the equality

rkH1pSalpAq;Qq “ rkT ` |A|

the set pBpAq is a basis of H1pSalpAq;Qq.
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Definition 3.2.4. Now we can define the set of classes

BT pAq :“ tλM1pT q, . . . , λMr pT qu

as the basis of H1pST ;Qq that is dual to pBT pAq.

Remark 3.2.5. Recall that there is a natural projection on the compact torus
SalpAq Ñ Tc that induces by restrictions maps SL Ñ Tc (see [CD17, Rmk. 4.1.6 and
Thm. 4.2.3]). In particular there is is a natural isomorphism between H˚pST ;Qq
and H˚pTc;Qq induced by the maps ST Ñ Tc. Using the inclusions

ST ãÑ SalpAq Ñ Tc

we can identify H˚pTc;Qq » H˚pST ;Qq with a sub-algebra of H˚pSalpAq;Qq.

Definition 3.2.6. For i “ 1, . . . , r we will write λMi for the cohomology class in
H1pSalpAq;Qq that is the restriction of the class λMipT q P H1pST ;Qq » H1pTc;Qq.

Hence we can define the classes ωH , for H P A, such that the set

BpAq :“ tλM1 , . . . , λMru Y tωH | H P Au

is the basis of H1pMpAq;Qq that is dual to pBpAq.
For every layer L we will write ωHpLq (resp. λMipLq) for the restriction of the

cohomology class ωH (resp. λMi) to SL,F pLq.

We will write I P H˚pMpAq;Qq for the ideal of H˚pMpAq;Qq generated by the
classes λM1 , . . . , λMr . Notice that the definition of the ideal I depends on the choice
of the chamber BpT q, but not on the choice of the layers M1, . . . ,Mr.

Choice 3.2.7. For every layer L P C of rank k ą 0 we choose elements N1pLq, . . .,
NkpLq P Cr´1 contained in L and such that the cycles

tpλ
N1pLq
BpLq , . . . ,

pλ
NkpLq
BpLq u

are linearly independent in H1pSL,F pLq;Qq.

Moreover we will consider the set of hypertori

Hi1 , . . . ,His P A

such that L Ă Hij , that is the set AL. Hence we can define the set

Definition 3.2.8.

pBLpAq :“ tpλ
N1pLq
BpLq , . . . ,

pλ
NkpLq
BpLq u Y tpωHi1 , . . . , pωHis u

Clearly the set pBLpAq is a basis of H1pSL,F pLq;Qq.

Definition 3.2.9. We write

BLpAq “ tλN1pLq
BpLq , . . . , λ

NkpLq
BpLq u Y tωHi1 pLq, . . . , ωHis pLqu

for the basis of H1pSL,F pLq;Qq that is dual to pBLpAq.
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3.3. Ideals and cohomology maps.

Definition 3.3.1. We define IpLq Ă H˚pSL,F pLq;Qq as the ideal of H˚pSL,F pLq;Qq
generated by the classes λ

N1pLq
BpLq , . . . , λ

NkpLq
BpLq .

Lemma 3.3.2. Let ϕL : SL,F pLq Ñ SalpAq be the inclusion map. The induced

restriction homomorphism in cohomology ϕ˚L : H1pSalpAq;Qq Ñ H1pSL,F pLq;Qq
maps as follows:

ϕ˚L : λMi ÞÑ
ÿ

ahiλ
NhpLq
BpLq

where the coefficients ahi are given by the relation pλNhF pT q “
ř

ahipλ
Mi

F pT q and if L Ă H

we have

ϕ˚L : ωH ÞÑ ωHpLq `
k
ÿ

h“1

ÿ

FĎNhpLq
HPSF pBpLq,F pT qqzANhpLq

εpH,Bqλ
NhpLq
BpLq ,

while if L Ć H we have

ϕ˚L : ωH ÞÑ
k
ÿ

h“1

ÿ

FĎNhpLq
HPSF pBpLq,F pT qqzANhpLq

εpH,Bqλ
NhpLq
BpLq .

Proof. Using the homological basis of H1pSL,F pLq;Qq we can consider the pairings

ż

pλ
Nh
BpLq

ϕ˚Lpλ
Miq “

ż

pλ
Nh
BpLq

λMi “

“

ż

pλ
Nh
F pT q

λMi `
ÿ

¨¨¨

εH

ż

pωH

λMi “

“

ż

pλ
Nh
F pT q

λMi “

“

ż

ř

ahj pλ
Mj
F pT q

λMi “ ahi.

where the second equality follows from Equation (3) and we don’t need to specify the
range of the sum and the coefficients of the terms pωH since they are not significant
in the computation. In the same way we have:

ż

pωH

ϕ˚Lpλ
Miq “

ż

pωH

λMi “

“

ż

pλ
Nh
F pT q

λMi `
ÿ

¨¨¨

εH

ż

pωH

λMi “ 0.
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The analogous computation for ωH gives:
ż

pλ
Nh
BpLq

ϕ˚LpωHq “

ż

pλ
Nh
BpLq

ωH “

“

ż

pλ
Nh
F pT q

ωH `
ÿ

FĎNk
H1PSF pBpLq,F pT qqzANh

εpH,BpLqq

ż

pωH1

ωH “

“
ÿ

FĎNk
H1PSF pBpLq,F pT qqzANh

εpH,BpLqqδH,H1 .

and
ż

pωH1

ϕ˚LpωHq “

ż

pωH1

pωH “ δH,H1 .

where H 1 P AL and hence there is a non-zero pairing if and only if L Ă H. �

The following result is a strightforward consequence of the formulas of Lemma
3.3.2.

Corollary 3.3.3. The homomorphism ϕ˚L maps ϕ˚LpIq Ă IpLq.

Corollary 3.3.4. Let µ P HspSalpAq;Qq be the restriction of the class µT P

HspTc;Qq. Then ϕ˚Lpµq “ 0 if rkpLq ą r ´ s.

Proof. This follows immediately from Lemma 3.3.2 since a product of more than
r ´ rkpLq classes of the type λMBpLq is zero in H˚pSL,F pLq;Qq. �

The result of Lemma 3.1.6 and Corollary 3.1.7 has the following consequence in
cohomology.

Lemma 3.3.5. Let A be a toric arrangement in the torus T . Let L P C be a layer
of A. Consider the quotient arrangement AL in T “ T {L0 and the cellular map
ΦL : SalpAq Ñ SalpALq. Moreover assume that πLpF pT qq “ F pT {L0q. Then for
any hypertorus H P AL the cohomology homomorphism

Φ˚L : H1pSalpALq;Qq Ñ H1pSalpAq;Qq

induced by ΦL maps as follows:

Φ˚L : ωπLpHq ÞÑ ωH .

Corollary 3.3.6. Let A be a toric arrangement in the torus T . Let L P C be a layer
of A. Consider the quotient arrangement SalpALq in T “ T {L0 and the cellular
map ΦL : SalpAq Ñ SalpALq. Moreover assume that πLpF pT qq “ F pT q. Then for
any layer Y P C, if we consider the cohomology map induced by the restriction

ΦL| : SY,F pY q ÞÑ SπLpY q,πLpF pY qq

the following holds: for any hypertorus H P A such that Y Ă H and L Ă H we
have

ΦL|
˚
pωπLpHqpπLpY qq “ ωHpY q.
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Proof. This follows immediately from the previous lemma using the commutativity
of the diagram

SY,F pY q SalpAq

SπLpY q,πLpF pY qq SalpALq.

ΦL

ϕY

ΦL

ϕπLpY q

�

Recall that we can assume the arrangement A to be totally ordered and we
actually fix such an ordering.

Given any d´ r-dimensional layer L P Cr in the torus T of dimension d, we can
consider the linear arrangement ArLs.

The ordering of A induces an ordering of ArLs. For every element of the nbc-
basis associated to the arrangement ArLs we can consider the corresponding ordered
subset S “ pHi1 , . . . ,Hir q Ă A.

We will write ωS for the product ωHi1 ¨ ¨ ¨ωHir P H
rpMpAq;Qq.

Corollary 3.3.7. Let A be a toric arrangement in the torus T of dimension d. Let
L P C be a layer of A of rank r. Consider the quotient arrangement SalpALq in
T “ T {L0 and the cellular map ΦL : SalpAq Ñ SalpALq. Assume that πLpF pT qq “
F pT q.

Let S “ pHi1 , . . . ,Hir q be an element of the nbc-basis of ArLs.
Let α P H˚pSalpALq;Qq be a class such that α ´ ωπLpSq restricts to zero in

H˚pSπLpLq;Qq and α restricts to a class in IpL1q Ă H˚pSL1 ;Qq for L
1
‰ πLpLq.

Then we have that the class ΦL
˚
pαq´ωS restricts to 0 in H˚pSL1 ;Qq if πLpL

1q “

πLpLq, that is if L1 Ď L, and ΦL
˚
pαq restricts to a class of IpL1q in H˚pSL1 ;Qq if

πLpL
1q ‰ πLpLq.

Proof. The result follows from Corollary 3.3.6 by multiplicativity. �

Remark 3.3.8. The cohomology ring H˚pSalpAq;Zq is a free Z module (this has
been proved in [dD15], but follows also from [CD17, Rmk. 6.1.1]).

Lemma 3.3.9. The cohomology ring H˚pSL;Zq is a module over H˚pT ;Zq gener-
ated by the restriction of the classes ωS for S P nbcpArLsq.

Proof. The lemma follows from [CD17, Thm. 4.2.3], where the homotopy equiva-
lence

ΘF0
: SL,F Ñ |F pALq| ˆ SalpArLsq

is given. Since the projection on the first component of ΘF0 is the projection SL,F Ñ
Lc induced by SalpAq Ñ Tc, we have that the cohomology of SL,F is a H˚pT ;Zq-
module generated by generators of the Orlik-Solomon algebra H˚pSalpArLsq;Zq.
Finally the following hold:

a) The homology classes pωH are non-trivial (in fact their image in SalpAHq is
non-zero).

b) For H Ą L the homology classes pωH have a representative in SL,F .
In fact, for every G P FpALq the arrangement ArGs contains H and hence in
particular a face W supported on H. Then we can consider the morphism m
of FpAq that arises from the order relation G ď W in FpArGsq (ensuring that
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Fm “ W ). Thus we see that the complex SF pArGsq contains the subposet Ωm

of Remark 2.3.2.
c) The classes pωH project to trivial classes in Tc “ ST .
d) If B is the essentialization of AztHu, the classes pωH maps to trivial classes in

SalpBq (this claim follows directly from Lemma 3.1.11 and Remark 3.1.11 when
A and AztHu have the same rank, otherwise from Lemma 3.1.6).

Hence we have that the classes ωHpLq for H Ą L, that are the restrictions of the
corresponding classes pωH to SL, are the standard generators of the Orlik-Solomon
algebra H˚pSalpArLsq;Zq. �

3.4. Group action and the cohomology ring.

Definition 3.4.1. Let A be a toric arrangement in a torus T . Let L P CrpAq a
layer and let S P nbcpArLsq. We define the subarrangement AS Ă A as the set of
hypertori of A associated to the elements of S.

Definition 3.4.2. Let A be a toric arrangement in a torus T . We define the
stabilizer of A as the group G Ă T given by

G :“ tg P T |@H P A, gH “ Hu.

and the essential stabilizer of A as the group G of the connected components of G.
Hence G :“ G{G0, where G0 is the connected component of the identity of G.

Given a layer L P CrpAq and an element S P nbcpArLsq we write GS (resp. GS)
for the stabilizer (resp. essential stabilizer) of AS .

Remark 3.4.3. We notice that if A is essential then G is discrete and we have
G » G. In general, by choosing a direct summand of G0 in T we get a lifting G Ñ G.
Hence we can always identify G with a subgroup of T that acts by multiplication
on the layers in CpAq.

Proposition 3.4.4. Let A be an essential arrangement in a torus T of dimension
d. Let L P Cr a layer of rank r ě 0 and let S P nbcpArLsq of length r. For a layer of
Y P CpAq let Y be the smallest layer in CpASq containing Y . There exists a unique
cohomology class ωS,L P H

rpSalpAq;Qq such that for every layer of Y P CpAq and
for every face F P FpA0q with supppF q “ Y we have:

i) If L Ă Y then ωS,L ´
ωS

| StabGS pY q|
restricts to 0 in HrpSY,F ;Qq;

ii) If L Ę Y then ωS,L restricts to 0 in HrpSY,F ;Qq.

Proof. We prove our statement by induction on d and r, considering the following
cases.

a) [d “ 0] For L “ T and S “ H we can just set ωS,L as the constant class
1 P H0pSalpAq;Qq.

b) [d “ 1, r “ 1] In this case the result is trivial as we can set ωS,L “ ωH .
c) [d ą 1, r ă d] Suppose now that dimT “ d ą 1. We can assume that the

statement is true for any essential arrangement in a torus T 1 with dimT 1 ă d.
Then if rkpLq “ r ă d the statement follows also for dimT “ d. In fact,
given S “ pHi1 , . . . ,Hir q P nbcpArLsq of length r, we can consider the quotient
arrangement AS :“ AS{L0, the layer L :“ L{L0 P CrpASq and the element
S :“ πLpSq P nbcpASrLsq. By induction the class ωS,L exists and we can set

ωS,L :“ Φ˚LpωS,Lq.
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In fact by induction, ωS,L ´
ωS

| StabG
S
pπLpY qq|

restricts to 0 in SπLpY q,R if L Ă

πLpY q, that is, if L Ă Y , and ωS,L restricts to 0 in SπLpY q,R if L Ę πLpY q, that

is, if L Ę Y . Hence, since GS » GS , according to Corollary 3.3.7 we have that

ωS,L ´
ωS

|StabGS pY q|

restricts to 0 in H˚pSY,F ;Qq for all Y, F such that L Ď Y and ωS,L restricts to

0 in H˚pSY 1,F 1 ;Qq if L Ę Y 1.
d) [d ą 1, r “ d] First we consider the case when A “ AS . Since in this case the

linear arrangement A0 is isomorphic to a boolean arrangement, it is enough to
consider a single chamber B0 P T pA0q and to set F pY q “ B0XY0, because B0 is
adjacent to every hyperplane in A0. Hence the results stated in [CD17, Thm. A
and B] hold in this special setting. In particular from [CD17, Thm. A] we can
choose a class ωS,L P H

rpSalpAq;Qq such that ωS,L ´ ωS restricts to zero in

L
rkpLq
L (and hence in HrpSL,F pLq;Qq) and ωS,L restricts to zero in L

rkpY q
Y for

Y ‰ L. From the definition of coherent elements (see [CD17, Def. 2.3.4]) and
from [CD17, Thm. B] we have that ωS,L restricts to zero in HrpSY,F pY q;Qq for
Y ‰ L. Hence ωS,L satisfies the required conditions i) and ii) when F “ F pY q.

Recall that for g P StabGS pY q we have a multiplication map g : Y Ñ Y that
from Lemma 3.1.10 is homotopic to the identity map and hence induces the
identity map on H˚pSY,F q.

We need to prove that i) and ii) are satisfied also for every complex SY,F ,
with F ‰ F pY q. This is trivially true for Y “ L, since in this case F “ F pY q
is the only possible face in FpA0q with supppF q “ Y0. When Y ‰ L we can
consider the class

ωYS,L :“
ÿ

gPStabGS pY q

g˚ωS,L P H
˚pSalpAq;Qq.

Let S “ S1 \ S2, where the elements of S1 are the elements of S that contains
Y . Let ε P t˘1u be the sign such that ωS “ εωS1

ωS2
. Consider the map

ΦS1
: SalpAq Ñ SalpAS1

q. We claim that

(8) ωYS,L “ εΦ˚S1
pωS1,πY pY q

qωS2
.

The equality follows checking that the two terms agree when restricted to
SW,F pW q for every W P CpASq. In fact we have:

ϕ˚W pω
Y
S,Lq “

ωS
|StabGS pW q|

¨ | StabGS pY q X StabGS pW q|

if L Ď StabGS pY q.W and

ϕ˚W pω
Y
S,Lq “ 0

otherwise. On the other side we have

ϕ˚W pεΦ
˚
S1
pωS1,πY pY q

qωS2
q “ ε

ωS1

| StabGS1
pπY pW qq|

ωS2
“

ωS
|StabGS1

pπY pW qq|

if πY pY q Ď πY pW q and

ϕ˚W pεΦ
˚
S1
pωS1,πY pY q

qωS2q “ 0
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otherwise. The equality

|StabGS pY q X StabGS pW q|

|StabGS pW q|
“

1

|StabGS1
pπY pW qq|

follows since the kernel of the surjective homomorphism

StabGS pW q Ñ StabGS1
pπY pW qq

is exactly the subgroup StabGS pY q X StabGS pW q. Moreover the two conditions
L Ď StabGS pY q.W and πY pY q Ď πY pW q are equivalent. In fact πY pLq “ πY pY q
and πY pStabGS pY q.W q “ πY pW q and this proves that the first condition implies
the second one. Since πY pW q is the quotient by Y0 of the smallest layer W of
AS1

containing W , the second condition means that Y ĂW and then L, which
is a point of Y , is contained in StabGS pY q.W , hence the second condition implies
the first. Then we have proved Equation (8). In particular we have by induction
that for every face F P FpA0q such that supppF q “ Y0 the class ωS,L restricts
in H˚pSY,F q as ωS

| StabGS pY q|
and this proves the proposition if A “ AS .

If A ‰ AS we can consider the map SalpAq Ñ SalpASq induced by the
inclusion MpAq ãÑ MpASq and the result follows applying Lemma 3.1.11 and
Remark 3.1.12. �

Theorem 3.4.5. Let A be an essential toric arrangement in T . The homomor-
phism of algebras

à

LPCpAq
ϕL : H˚pSalpAq;Zq Ñ

à

LPCpAq
H˚pSL;Zq

is injective.

Proof. Let R be a ring and let IR (resp. JR) be the ideal of A˚R :“ H˚pSalpAq;Rq
(resp. B˚R :“

À

LPCpAqH
˚pSL;Rq) generated by the restriction of H1pT ;Rq »

H1pST ;Rq. Note that IR and JR are graded ideals with respect to the cohomologi-
cal graduation and we will write pIRqj (resp. pJRqj) for the graded component of IR
(rsp. JR) in AjR (resp. BjR). Let GrpARq and GrpBRq be the associated bi-graded

groups, where we write GripA
j
Rq (resp. GripB

j
Rq) for pIiR{I

i`i
R qj (resp. pJ i

R{J
i`i
R qj).

The map Φ :“ ‘LPCpAqϕL induces an homomorphism of bi-graded groups

Φ : GripA
j
Rq Ñ GripB

j
Rq.

As recalled in Remark 3.3.8, the cohomology groups H˚pSalpAq;Zq and H˚pSL;Zq
are torsion free and hence AZ (resp. BZ) includes in AQ (resp. BQ). Moreover the

injectivity of Φ implies the injectivity of the map Φ. As a consequence of these two
facts, in order to prove that Φ is injective for R “ Z it will be enough to prove that
Φ is injective when R “ Q.

This can be seen showing that GripA
j
Qq and ΦpGripA

j
Qqq have the same dimen-

sion. In fact if we fix L P CpAq with rkpLq “ l we have that GripH
l`ipSL;Qqq »

H lpMpArLsq;Qq b HipL;Qq. For a given S P nbcpArLsq with |S| “ l and λ P

HipT ;Qq, the class ωS,L ¨ λ belongs to GripA
l`i
Q q.

It follows from Proposition 3.4.4 that ωS,L maps to ωSpLqbλ in the graded piece
GripH

l`ipSL;Qqq.
Moreover for L1 ‰ L with rkpL1q “ l1 we have that ωS,L maps to 0 in the graded

piece GripH
l`ipSL1 ;Qqq. Again this follows from Lemma 3.3.2 and Proposition
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3.4.4 since: either at least one of the hypertori Hs for s P S does not contains L1

and then ωS,L maps to JR, either L1 Ĺ L and hence ωSpLq has dimension less then
l1 in H˚pSL1 ;Qq.

As a consequence the images of the classes ωS,L ¨ λ for L P CpAq, S P nbcpArLsq
with |S| “ rkpLq and λ in a basis of HipL;Qq in GrpBQq are linearly independent
and the rank of the image of GrpAQq in GrpBQq is greater or equal to

ÿ

LPCpAq

2d´rkpLq dimHrkpLqpMpArLsq;Qq

that is the dimension of AQ (see [Loo93, DCP05]). Hence Φ is an injective homo-
morphism. �

Proposition 3.4.6. The classes ωS,L defined in Proposition 3.4.4 are integer
classes.

Proof. Following the same pattern of the proof of Proposition 3.4.4, we can prove
the result by induction. The claim follows immediately for the cases a) (since 1 is
an integer class) b) (since the classes ωH are integer classes) and c) since the pull
back of an integer class is an integer class.

Concerning case d), since the restriction of an integer class is an integer class, we
can assume that A “ AS . We will show that for a given layer Y such that L Ă Y and
| StabGS pY q| ‰ 1 the restriction of the class ωS,L in H˚pSY,F ;Qq is an integer class.
We consider the group N :“ StabGS pY q and the quotient SalpAq Ñ SalpAq{N . We
have a commutative diagram

SalpAq SalpAq{N

SY,F SY,F {N
πN

We have an homotopy equivalence

SY,F SY,F {N

SalpArY sq ˆ Y SalpArY sq ˆ pY {N q

»

πN

»

Let m “ |StabGS pY q|. Notice that when i “ dimpY q the cohomology map

HipY {N ;Qq Ñ HipY ;Qq

induced by the m-fold covering Y Ñ Y {N is the multiplication by m.
Recall that we are assuming that r “ rkpT q “ rkpAq “ |S| and hence i “

dimY “ r “ rkpY q.
The class ωS P H

rpSalpAq;Zq is N -invariant and hence it is the pullback of an
integer class ωS P H

rpSalpAq{N ;Zq. Moreover the class ωS restricts to a class β P
HrpSY,F {N ;Zq » HrkpY qpSalpArY sq;Zq bHipY ;Zq. This implies that ϕ˚Y,F pωSq “

π˚N pβq is m-times an integer class in HrpSY,F ;Zq and hence ωS,L restricts to an
integer class in SY,F . From the injectivity of the map

H˚pSalpAq;Zq Ñ
à

Y PC
H˚pSY ;Zq

it follows that the class ωS,L is an integer class. �
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Theorem 3.4.7. Let A be an essential toric arrangement in T .The integer coho-
mology ring H˚pSalpAq;Zq is generated as a module over H˚pT ;Zq by the classes
ωS,L for L P CpAq and S P nbcpArLsq.

Proof. Since we have proved in Theorem 3.4.5 that the map Φ “ ‘LPCpAqϕL is
injective over Z, it will be enough to show that the image of the homomorphism of
algebras

à

LPCpAq
ϕL : H˚pSalpAq;Zq Ñ

à

LPCpAq
H˚pSL;Zq

is theH˚pT ;Zq-module generated by the restrictions of the classes ωS,L for L P CpAq
and S P nbcpArLsq.

We keep the notation of the proof of Theorem 3.4.5. Let A1R the sub-H˚pT ;Rq-
module of AR generated by the classes ωS,L for L P CpAq and S P nbcpArLsq. Using

the injectivity of Φ : A˚Z Ñ B˚Z and the fact that the surjectivity of Φ : GrpA1Rq Ñ

ΦpGrpARqq implies the surjectivity of Φ : A1R Ñ ΦpARq, in order to prove that
A1Z “ AZ we will show that

ΦpGrpA1Zqq “ ΦpGrpAQqq XGrpBZq.

In fact, since we have the inclusions ΦpGrpA1Zqq Ă ΦpGrpAZqq Ă ΦpGrpAQqq X
GrpBZq, the equality between the first and the last term implies the equality between
the first and the second one. As we have seen in the proof of Theorem 3.4.5, Φ maps
the class of ωS,L in Gr0pH

rkpLqpSalpAq;Zqq to the class ωSpLq in Gr0pH
rkpLqpSL;Zq.

Since H˚pSL;Zq » H˚pMpArLsq;ZqbH˚pLq we have that the set of classes ωSpLq
for S P nbcpArLsq is a set of generators of

à

i

GripH
rkpLq`ipSL;Zqq »

à

i

HrkpLqpMpArLsq;Zq bHipLq

as a H˚pT ;Zq-module. The sum of these modules, for L P CpAq, is the intersection
ΦpGrpAQqq XGrpBZq. Hence the claim follows. �

Example 3.4.8. As an example of our result we provide an explicit description of
the cohomology of the complement of the toric arrangement A “ tH0, H1, H2u in
T “ pC˚q2 given by:

H0 “ tz P T |z0 “ 1u; H1 “ tz P T |z0z
2
1 “ 1u; H2 “ tz P T |z1 “ 1u.

The associated hyperplane arrangement A0 in V “ R2 is given by the corresponding
hyperplanes

W0 “ tx P V |x0 “ 0u; W1 “ tx P V |x0 ` 2x1 “ 0u; W2 “ tx P V |x1 “ 0u.

We consider in T pA0q the chambers B0 “ tx P V |x0 ă 0, x0 ` 2x1 ą 0u and
B1 “ tx P V |x1 ą 0, x0 ` 2x1 ă 0u (see Figure 1). The poset of layers CpAq is
given by the elements T,H0, H1, H2 and the points P “ tp1, 1qu, Q “ tp1,´1qu. In
order to define the subcomplexes SL for L P CpAq we need to choose the chamber
BpLq. We can do this as follows: BpH2q “ B1, BpLq “ B0 for L ‰ H2. Moreover

for H P A choose HC : BpHq. As a basis pBT pAq we can choose the set tpλH0

B0
, pλH2

B0
u.

All the other choices of basis are natural. In Table 1 we describe the restriction
of each generator of the cohomology of SalpAq to each one of the subcomplexes
SL “ SL,F pLq, for L P CpAq. Cells are empty when a class restricts to zero. The
multiplicative structure of the cohomology of SalpAq is induced by the multiplcative
structure on each subcompex.
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H1

Q

P

W0

W1

H0

B1

B0

W2H2

Figure 1. The real picture of the toric arrangement A of Example
3.4.8 (on the left) and of the corresponding central arrangement A0

(on the right).

SalpAq ST SH0 SH1 SH2 SP SQ
λH0

B0
λH0

B0
λH0

B0
λH1

B0

λH2

B0
λH2

B0
2λH1

B0
λH2

B1

ωH0
ωH0

ωH0
ωH0

ωH1 ωH1 2λH2

B1
ωH1 ωH1

ωH2
ωH2

ωH2

ωt0,2u,P ωH0ωH2

ωt1,2u,P λH2

B1
ωH2

ωH1
ωH2

ωt1,2u,Q ωH1
ωH2

Table 1

4. Representations of arithmetic matroids

In Section 7 of [CD17] we investigate the dependency of our presentation of
from the combinatorial data. There, we claim the following result (where the last
qualifier was implicit in the paragraphs preceding this theorem in [CD17]).

Theorem 4.0.1 ([CD17, Thm. 7.2.1]). If an arithmetic matroid with a basis of
multiplicity 1 is representable by a matrix A, then, if we fix such a basis, the matrix
A is unique up to sign reversal of the column vectors and up to a unimodular
transformation from the left.

The proof given in the paper is not correct. As explained in [Len19], the argu-
ment of the proof in case b) fails for example for the matrix

X “

¨

˝

1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 ´1

˛

‚

since it is not possible to make the bottom right entry positive preserving all other
signs while in the proof this is assumed to be possible.
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However, the claim of Theorem 7.2.1 of [CD17] is true: a correct proof follows
from the results by Lenz [Len19, Thm. 1.1] and in more generality from Pagaria
[Pag19, Thm. 3.5].

5. Summary of corrections

We now summarize the modifications in the body of [CD17] that are required by
the corrections in this Erratum. The details for the corrections of §2–6 are given
in Sections 1–3. The details for the correction of §7 are given in Section 4.

§2 The rings ApAq and BpAq are isomorphic to a graded algebra associated to
a filtration of H˚pMpAq;Zq induced by the Leray spectral sequence, but in
general they are not isomorphic to the ring H˚pMpAq;Zq itself. The statements
of Thm. A and B should be replaced by Prop. 3.4.4, Thm. 3.4.5, Thm. 3.4.7 of
this Erratum.

§3 The results in this sections holds without any change.
§4 The statements previous to Thm. 4.2.17 holds. Thm. 4.2.17 holds only if the

subcomplexes SL and SL1 are defined choosing F0 “ B X L0 and F 10 “ B X L10
for a common chamber B. Notice that Def. 4.2.16 require to choose a face F0

and this is not explicit in the notation of SL. Lem. 4.2.18 and Sch. 4.2.19 holds.
§5 Lem. 5.1.2, Thm. 5.1.3 and Thm. 5.1.5 hold. Cor. 5.1.6 and the following

statements are false.
§6 Lem. 6.1.2 and Thm. 6.1.3 hold. Thm. 6.2.4 is false. We refer to [CDD`18] for

a description of the cohomology of the complement in the general case.
§7 Thm. 7.2.1 holds, but the proof given in [CD17] is wrong. Example 7.3 gives only

a description of the graded ring associated to the filtration of the cohomology
of the complement of the toric arrangement.
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