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14 (Brylawski 1973, Greene 1973, Woodall 1974) Let B and B’ be bases
of a matroid M and (B1, Ba, ..., B) be a partition of B. Prove that
there is a partition (B}, B, ..., Bj) of B’ such that (B - B;) U Bj
is a basis for all i in {1,2, ..., k}.

1.5 Geometric representations of matroids of small rank

One attractive feature of graphic matroids is that one can determine many
properties of such matroids from the pictures of the graphs. In this section
we show that all matroids of small rank have a geometric representation
that is similarly useful.

We begin our discussion by introducing another class of matroids. A
multiset {v1,22,...,Uk}, the members of which are in V(m, F), is affinely
dependent if k > 1 and there are elements a1, as, ..., ax of F, not all zero,
such that Ef=1 a;v; = 0 and Zf__.l a; = §. Equivalently, {v1,22,..-, Uk}
is affinely dependent if fHe multiset {(;,Ql),(l,yg),“.,(l,y_k)} is lin-
early dependent in Vén’i-"+ 1,F), where (1,v;) is the (m + 1)-tuple of
elements of F' whose first entry is 1 and whose remaining entries are the
entries of v;. A multiset of elements from V'(m, F) is affinely independent
if it is not affinely dependent. Clearly an affinely independent multiset
must be a set.

1.5.1 Proposition.  Suppose that E is a set that labels a multiset of elements
from V(m, F). LetT be the collection of subsets X of E such that X labels
an affinely independent subset of V(m, F). Then (E,ZI) is a matroid.

Proof. Suppose that E labels the multiset {z1,22,...,2 n}. Then, from
the second definition of affine dependence, we deduce that (E,7) = M [A]
where A is the (m + 1) x n matrix over F, the ith column of which is
(1,u;)T. Alternatively, one can prove this result directly by using the first
definition of affine dependence, and we leave this to the reader (Exercise
2). u]

The matroid (E,Z) in the last proposition is called the affine matroid
on E, and if M is isomorphic to such a matroid, we say that M is affine
over F.

1.5.2 Example. Let E be the subset {(0, 0), (1,0),(2,0),(0,1),(0,2),(1,1)}
of V(2,R) and consider the affine matroid M on E. The six elements of
E can be represented as points in the Euclidean plane R? as in Figure
1.6. It is not difficult to check that the dependent sets of M consist of
all subsets of E with four or more elements together with all 3-element
subsets of E such that the corresponding three points in Figure 1.6 are

collinear. O
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Fig. 1.6. A rank-3 affine matroid.

Y

In general, if M is an affine matroid over R of rank m+1 where m < 3,
then a subset X of E(M) is dependent in M if, in the representation of X
by points in R™, there are two identical points, or three collinear points,
or four coplanar points, or five points in space. Hence the flats of M of
ranks one, two, and three are represented geometrically by points, lines,
and planes, respectively. A typical geometric representation of such an
affine matroid is given in the next example.

Example. Consider the affine matroid M on the subset E of V(3,R)
where E = {(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(0,1,1)}. M has
the representation shown in Figure 1.7. From that diagram, we see
that the only dependent subsets of E with fewer than five elements are
the three planes {(0,0,0), (1,0,0), (0,1,0), (1,1,0)}, {(0,0,0), (0,1,0),
(0,0,1), (0,1,1)}, and {(1,0,0), (1,1,0), (0,0,1), (0,1,1)}. O

We now have a geometric way to represent real affine matroids of rank
at most four. Next we show how to extend the use of this type of diagram
to represent arbitrary matroids of rank at most four.

4

(0,1,1)

(1,1,0)

Fig. 1.7. A rank-4 affine matroid.
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1.5.4
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Fig. 1.8. A geometric representation of a rank-2 matroid.

Example. The matroid M in Example 1.1.2 can be represented by
the diagram in Figure 1.8. In such a diagram, we represent a 2-element
circuit by two touching points, and a 3-element circuit by a line through
the corresponding points. Loops, which cannot occur in an affine matroid,
are represented in an inset as shown. [m}

In general, such diagrams are governed by the following rules. All
loops are marked in a single inset. Parallel elements are represented by
touching points, or sometimes by a single point labelled by all the elements
in the parallel class. Cpr_i_psponding to gach element that is not a loop
and is not in a non—triii;i]f_parallel classy there is a distinct point in the
diagram which touches’ 16 other points. If three elements form a circuit,
the corresponding points are collinear. Likewise, if four elements form a
circuit, the corresponding points are coplanar. In such a diagram, the
lines need not be straight and the planes may be twisted. Moreover,
sometimes, to simplify the diagram, certain lines and planes will be listed
rather than drawn. At other times, certain lines with fewer than three
points on them will be marked as part of the indication of a plane, or as
construction lines. We call such a diagram a geomeiric representation for
the matroid. The reader is warned that such a representation is not to
be confused with the diagram of a graph. Where ambiguity could arise
in what follows, we shall always indicate how a particular diagram is to
be interpreted.

One needs to be careful not to assume that an arbitrary diagram
involving points, lines, and planes is actually a geometric representation
for some matroid.

Example. ‘The Escher matroid’ (Brylawski and Kelly 1980). Con-
sider the diagram shown in Figure 1.9, the dependent lines being {1,2,3}

Fig. 1.9. The Escher matroid.
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and {1,4,5}, and the dependent planes {1,2,3,4,5},{1,2,3,6,7}, and
{1,4,5,6,7}. With the rules that govern diagrams being as specified
above, this diagram does not represent a matroid on E = {1,2,...,7}.
To see this, assume the contrary and let X = {1,2,3,6,7} and ¥ =
{1,4,5,6,7}. Then r{X) =3 =r(Y) and r(X UY) = 4. Thus, by (R3),
r({1,6,7}) = (X NY) < 2. But 1, 6, and 7 are distinct non-collinear
points, so 7({1,6,7}) = 3; a contradiction. If we make 1, 6, and 7 collinear
as in Figure 1.10, the resulting diagram does represent a rank-4 matroid.
We leave it to the reader to check this. : o

(®

Fig. 1.11. (2) PG(2,2) and (b) PG(2,3).
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5.6

1.5.7

1.5
A
Example. The pictures shown in Figure 1,11 are representations of the
7-point and 13-point projective planes, PG(2,2) and PG(2,3). Interpret-
ing these pictures as diagrams subject to the above rules, it is not difficult
to check that each represents a rank-3 matroid. The 7-point projective
plane is called the Fano plane. The corresponding matroid, the Fano ma-
troid, will be denoted by Fy or PG(2,2). This matroid is of fundamental
importance and will occur frequently throughout this book. Indeed, all
projective geometries play an important role in matroid theory; we shall
discuss this in detail in Chapter 6.

vk §Pa

®

Fig. 1.12. (a) F¥\7. (b) A graph whose cycle matroid is FA\T.

The diagram in Figure 1.12(a) represents the matroid that is obtained
from Fy by deleting the element 7. Notice that no line has been drawn
through 3 and 6, or through 2 and 5, or through 1 and 4, even though
{3,6}, {2,5}, and {1,4} are rank-2 flats of the matroid. Such 2-point
lines are usually omitted from these diagrams, as are 3-point planes.

It is not difficult to check that F¥\7 2 M(K}), where the edges of the

graph K, are labelled as in Figure 1.12(b). Similarly, F7\2, for which a
geometric representation is shown in Figure 1.13, is also isomorphic to
M(K,). Indeed, as the reader can easily check, Fry\z = M (Ky) for all z
in E(Fy). This is one of the many attractive features of F. a

Example. Consider the affine matroid on the full vector space V(3,2).
We denote this matroid by AG(3,2). It has eight elements, correspond-

4

Fig. 1.13. F7\2
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ing to the eight points in Figure 1.14(a). In addition, it has fourteen
4-point planes, not all of which are marked in Figure 1.14(a). These
planes consist of the six faces of the cube, the six diagonal planes such as
{{(0,0,0),(1,0,0),(1,1,1),(0,1,1)}, and the two twisted planes, {(0, 0,0),
(1,0,1),(1,1,0),(0,1,1)} and its complement. Note that if Figure 1.14(a)
is viewed as an affine matroid over R instead of over GF(2), then we get
twelve rather than fourteen planes, the two twisted planes disappearing.

An alternative representation for AG(3,2) can be obtained from the
11-point matroid shown in Figure 1.14(b). This 11-point matroid is ob-
tained by ‘sticking together’ two copies of F7 along a line. The restriction
of this matroid to the set {1,2,...,8} is isomorphic to the binary affine
cube in Figure 1.14(a). We leave it to the reader to check the details
of this. To see the fourteen 4-point planes in the second representation
for AG(3,2), we first note that {1,2,3,4} and {5,6,7,8} are two of the
fourteen. The other twelve break into three groups of four according to
whether the corresponding planes in the original 11-point matroid contain
a, b, or c. For example, the four planes containing a arise by taking the
union of two lines containing a, one from each copy of F7, and neither
equal to {a, b, c}. O

©,1.1

0,1,0)
(a)

(®

Fig. 1.14. Two geometric representations of AG(3,2).
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1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

e

We have already seen in Example 1.5:5 that a diagram involving
points, lines, and planes need not correspond to a matroid. Next we
state necessary and sufficient conditions under which such a diagram is
actually a geometric representation for a simple matroid of rank at most
four in which the rank-1, rank-2, and rank-3 flats correspond to the points,
lines, and planes in the diagram. These rules are stated just for simple
matroids because we already know how to recognize loops and parallel
elements in such a diagram. The rules, all of which are very natural from
our current geometric perspective, include the following straightforward
non-degeneracy conditions: the sets of points, lines, and planes are dis-
joint; there are no sets of touching points; every line contains at least two

points; any two distinct points lie on a line; every plane contains at least ,
three non-collinear points; and any three distinct non-collinear points lie

on a plane. For a diagram having at most one plane, there is only one
other condition: s +

H

P ! .
Any two distinct lines mieet in at most one point.

For a diagram having two or more planes, there are three rules in addition
to the non-degeneracy conditions (Mason 1971):

Any two distinct planes meeting in more than two points do so in a line.

Any two distinct lines meeting in a point do so in at most one point and
lie on a common plane.

Any line not lying on a plane intersects it in at most one point.

We leave the proofs of these results to the reader (Exercises 3 and 4).
Using geometric representations, the reader should be able to check that
there are 17 non-isomorphic matroids on-a 4-set, and 35 non-isomorphic
matroids on a 5-set.

Example. The diagram in Figure 1.15 obeys 1.5.8 and is therefore a
geometric representation for a matroid N. Comparing Figure 1.15 with

the geometric representation for F in Figure 1.11(a), we see that {2, 4, 6}
is both a circuit and a hyperplane in Fy, whereas, in N, this set is a
1

2y

Fig. 1.15. F;.
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%Fig. 1.16. The Pappus and non-Pappus matroids.

basis. We zsay that N has been obtained from F7 by relazing the circuit—
hyperplane {2,4,6}. This operation can be performed on matroids in
general. ' o

Propositio}:. Let M be a matroid having a subset X that is both a circuit
and a hyperplane. Let B = B(M)U{X}. Then B’ is the set of bases of
a matroid M’ on E(M). Moreover,

e(M') = (&(M) - {X})U{X Ue:e e E(M)—-X}.
Proof. We leave this as an exercise. 0O

The mé,troid M’ in the last proposition is called a relazation of M.
Thus the matroid N in Figure 1.15 is a relaxation of F7. We call N the
non-Fano matroid and denote it by F .

Example. ' The diagrams in Figure 1.16 obey 1.5.8 and are therefore ge-
ometric representations for rank-3 matroids. We call these matroids the
Pappus and non-Pappus matroids, respectively, because of their relation-
ship to the well-known Pappus configuration in projective geometry. As
we shall see in Chapter 6, the non-Pappus matroid is not representable
over any field. A smallest matroid with this property can be obtained from
AG(3,2) by relaxing a circuit—hyperplane. The proof that this matroid
is non-representable will also be delayed until Chapter 6. O

Example. Figure 1.17 contains another familiar object from projective
geometry, the 3-dimensional Desargues configuration. One can check that
the points, lines, and planes of this diagram obey 1.5.9-1.5.11 so that
this diagram is indeed a geometric representation for a 10-element rank-4
matroid. Aflternatively, one can show that this diagram is the geometric
representation for M (K5) with the edges of K5 being labelled as in Figure
1.5. ' a




44 Basic definitions and exampies 1.5

Fig. 1.17. M(K5).

In light of the geometric representations discussed in this section, it
should not be surprising that the terms point, line, and plane are often
used in an arbitrary matroid to refer to flats of ranks one, two, and three,
respectively.

Exercises

1. Determine which of conditions 1.5.9-1.5.11 is violated by the dia-
gram in Figure 1.9.

2. Give a direct proof of Proposition 1.5.1 by using the first definition
of affine dependence. .

3. Let D be a diagram involving points and lines in the plane and sat-
isfying 1.5.8 as well as the non-degeneracy conditions stated before
it. Prove that there is a simple matroid of rank at most three on
the set of points of D whose rank-1 and rank-2 flats are the points
and lines, respectively, of D.

1.5
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Let D be a diagram involving points, lines, and planes and satisfying
1.5.9-1.5.11 as well as the non-degeneracy conditions. Prove that
there is a simple matroid of rank at most four on the set of points of
D that has as its rank-1, rank-2, and rank-3 flats the points, lines,
and planes, respectively, of D.

Show that neither the Fano nor the non-Fano matroid is graphic.

Prove that an affine matroid over GF(2) has no circuits with an
odd number of elements.

Prove that every relaxation of F7 is isomorphic to F .

Let M be a matroid and X be a circuit-hyperplane of M. Let M’
be the matroid obtained from M by relaxing X. Find, in terms of
M, the independent sets, the rank function, the hyperplanes, and
the flats of M'.

Prove that the following statements are equivalent for a rank-r
matroid M.

(a) M is a relaxation of some matroid.

(b) M has a basis B such that C(e,B) = BUe for every e in
E(M) — B and neither B nor E(M) — B is empty.

(c) M has a non-empty basis B such that B # E(M) and every
(r — 1)-element subset of B is a flat.

The matroids My and M, for which geometric representations are
shown in Figure 1.18 are graphic. For i = 1,2, find a graph G; for
which M(G;) = M;.

Fig. 1.18. Geometric representations of two graphic matroids.



