INTRODUCTION TO MATROID THEORY SUGGESTED EXERCISES

- 1. Compute the Tutte polynomial of the following matroids using the Tutte-Grothendieck recursion.
 - (a) The matroid with k elements, all of which are loops (this is $U_{0,k}$.
 - (b) The matroid with k elements, all pairwise parallel (this is $U_{1,k}$).
 - (c) Using part (a) and (b) it will be easier to compute the Tutte polynomial of

2. Let M_1 , M_2 be two matroids. Prove that

 $T_{M_1 \oplus M_2}(x, y) = T_{M_1}(x, y)T_{M_2}(x, y).$

One possibility to do this is as follows. Let E_1, E_2 be the ground sets of M_1 and M_2 . Without loss of generality suppose that E_1 and E_2 are disjoint. Then $M_1 \oplus M_2$ has ground set $E_1 \cup E_2$. Also let $\mathrm{rk}_1, \mathrm{rk}_2, \mathrm{rk}_{\oplus}$ denote the rank function of $M_1, M_2, M_1 \oplus M_2$.

(a) Prove that, for all $X \subseteq E_1 \cup E_2$,

 $\operatorname{rk}_{\oplus}(X) = \operatorname{rk}_1(X \cap E_1) + \operatorname{rk}_2(X \cap E_2)$

(Hint: remember the description of the independent sets of the direct sum from the very first exercises!)

(b) Use (a) in order to prove the desired equality.