INTRODUCTION TO MATROID THEORY SUGGESTED EXERCISES

1. Compute the Tutte polynomial of the following matroids using the Tutte-Grothendieck recursion.
(a) The matroid with k elements, all of which are loops (this is $U_{0, k}$.
(b) The matroid with k elements, all pairwise parallel (this is $U_{1, k}$).
(c) Using part (a) and (b) it will be easier to compute the Tutte polynomial of

2. Let M_{1}, M_{2} be two matroids. Prove that

$$
T_{M_{1} \oplus M_{2}}(x, y)=T_{M_{1}}(x, y) T_{M_{2}}(x, y) .
$$

One possibility to do this is as follows. Let E_{1}, E_{2} be the ground sets of M_{1} and M_{2}. Without loss of generality suppose that E_{1} and E_{2} are disjoint. Then $M_{1} \oplus M_{2}$ has ground set $E_{1} \cup E_{2}$. Also let $\mathrm{rk}_{1}, \mathrm{rk}_{2}, \mathrm{rk}_{\oplus}$ denote the rank function of M_{1}, $M_{2}, M_{1} \oplus M_{2}$.
(a) Prove that, for all $X \subseteq E_{1} \cup E_{2}$,

$$
\mathrm{rk}_{\oplus}(X)=\mathrm{rk}_{1}\left(X \cap E_{1}\right)+\mathrm{rk}_{2}\left(X \cap E_{2}\right)
$$

(Hint: remember the description of the independent sets of the direct sum from the very first exercises!)
(b) Use (a) in order to prove the desired equality.

