INTRODUCTION TO MATROID THEORY SUGGESTED EXERCISES (CLASS OF MARCH 29TH, 2018)

- 1. A standard definition for geometric lattices is the following: "A finite lattice L is geometric if
 - (a) it is ranked (meaning: it possesses a rank function),
 - (b) it is atomic (meaning: every element $x \in L$ can be expressed as a join of atoms)¹,
 - (c) for all $x, y \in L$, if $x, y > x \land y$, then $x \lor y > x, y$. "

Prove that this definition is equivalent to the one given in class.

- 2. Let \mathcal{B} be the set of bases of a matroid on the ground set E. Prove that the following property holds:
- $(B2)^*$ For every $B_1, B_2 \in \mathcal{B}$ and every $y \in B_2 \setminus B_1$ there is $x \in B_1$ such that $(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$.

¹More precisely: for every $x \in L$ there is $\ell \in \mathbb{N}$ and atoms $a_1, \ldots, a_\ell \in A(L)$ such that $x = a_1 \lor a_2 \lor \ldots \lor a_\ell$