INTRODUCTION TO MATROID THEORY SUGGESTED EXERCISES (CLASS OF MARCH 15TH, 2018)

- 1. Consider the matroid $U_{2,4}$.
 - (a) Compute the characteristic polynomial $\chi_{U_{2,4}}(t)$ using the definition.
 - (b) Let e be an element of the ground set of $U_{2,4}$. Prove that $U_{2,4} \setminus e \simeq U_{2,3}$ and $U_{2,4}/e \simeq U_{1,3}$.
 - (c) Compute $\chi_{U_{2,3}}(t)$ and $\chi_{U_{1,3}}(t)$ using the definition.
 - (d) Check your computations in (a), (b), (c) by verifying that $\chi_{U_{2,4}}(t) = \chi_{U_{2,3}}(t) \chi_{U_{1,3}}(t).$
 - (e) Use the formula from (a) in order to show that $U_{2,4}$ is not graphic.

(Hint: it's easier than you think).

For the following exercise, recall from Exercise 7 on page 14 of the book (you solved this in the 3d week of classes!): Let M_1, M_2 be matroids on disjoint sets E_1, E_2 with independent sets \mathcal{I}_1 , resp. \mathcal{I}_2 . Let $E := E_1 \cup$ E_2 . Then the direct sum $M_1 \oplus M_2$ is the matroid M with independent sets given by

$$\mathcal{I}(M) := \{ I_1 \cup I_2 \mid I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2 \}$$

2. Prove that

(*

$$\chi_{M_1 \oplus M_2}(t) = \chi_{M_1}(t) \chi_{M_2}(t).$$

In order to do so, one possibility is to follow the following path (where, for all $A \subseteq E$, we let $A_1 := A \cap E_1$ and $A_2 := A \cap E_2$). (i) Prove that, for all $A \subseteq E$,

$$M[A] = M[A_1] \oplus M[A_2].$$

(ii) Prove that, for all $A \subseteq E$,

$$\operatorname{rk}(A) = \operatorname{rk}_1(A_1) + \operatorname{rk}_2(A_2),$$

where rk, resp. rk₁, rk₂ denote the rank functions of M, resp. M_1 , M_2 .

(iii) Prove Equality (*).