INTRODUCTION TO MATROID THEORY
 SUGGESTED EXERCISES
 (CLASS OF MARCH 15TH, 2018)

1. Consider the matroid $U_{2,4}$.
(a) Compute the characteristic polynomial $\chi_{U_{2,4}}(t)$ using the definition.
(b) Let e be an element of the ground set of $U_{2,4}$.

Prove that $U_{2,4} \backslash e \simeq U_{2,3}$ and $U_{2,4} / e \simeq U_{1,3}$.
(c) Compute $\chi_{U_{2,3}}(t)$ and $\chi_{U_{1,3}}(t)$ using the definition.
(d) Check your computations in (a), (b), (c) by verifying that $\chi_{U_{2,4}}(t)=\chi_{U_{2,3}}(t)-\chi_{U_{1,3}}(t)$.
(e) Use the formula from (a) in order to show that $U_{2,4}$ is not graphic.
(Hint: it's easier than you think).
For the following exercise, recall from Exercise 7 on page 14 of the book (you solved this in the 3d week of classes!): Let M_{1}, M_{2} be matroids on disjoint sets E_{1}, E_{2} with independent sets \mathcal{I}_{1}, resp. \mathcal{I}_{2}. Let $E:=E_{1} \cup$ E_{2}. Then the direct sum $M_{1} \oplus M_{2}$ is the matroid M with independent sets given by

$$
\mathcal{I}(M):=\left\{I_{1} \cup I_{2} \mid I_{1} \in \mathcal{I}_{1}, I_{2} \in \mathcal{I}_{2}\right\}
$$

2. Prove that

$$
\begin{equation*}
\chi_{M_{1} \oplus M_{2}}(t)=\chi_{M_{1}}(t) \chi_{M_{2}}(t) . \tag{*}
\end{equation*}
$$

In order to do so, one possibility is to follow the following path (where, for all $A \subseteq E$, we let $A_{1}:=A \cap E_{1}$ and $A_{2}:=A \cap E_{2}$).
(i) Prove that, for all $A \subseteq E$,

$$
M[A]=M\left[A_{1}\right] \oplus M\left[A_{2}\right] .
$$

(ii) Prove that, for all $A \subseteq E$,

$$
\operatorname{rk}(A)=\operatorname{rk}_{1}\left(A_{1}\right)+\operatorname{rk}_{2}\left(A_{2}\right),
$$

where rk , resp. $\mathrm{rk}_{1}, \mathrm{rk}_{2}$ denote the rank functions of M, resp. M_{1}, M_{2}.
(iii) Prove Equality (*).

