## WORKSHEET 2

Recall:

- We have set up an on-line meeting on October 29, at 15:30, in order to discuss any questions related to modules 1 and 2 , and in particular any assignments you find difficulty with.
- There might be some ("non-starred") assignments from Worksheet 1 that you have left for after Module 2.

Please let me anyway know in advance of the zoom-meeting if there is anything special you would like me to discuss in that occasion. This helps me prepare for it and gauge what, if anything, I might adjust in preparing the remainder of the lecture.

## 1. Reading

(i) Read from the original source the part of the proof of Theorem 1.1 (Lecture Notes \#2) that we did not discuss yet (this is $\S 4.3$ in the Gel'fand-Goresky-MacPherson-Serganova paper I included in the literature folder).
(ii) Read from the Lecture Notes \# 2 the proofs of Lemma 1.8 (revised); Lemma 2.1, Lemma 2.10 and Corollary 2.11 (omitted in the lecture); Proposition 2.4 (partly omitted in the lecture),
(iii) Read the proof of Theorem 1.10 (revised) from Lecture Notes \#2, now with an illustrative example, and if needed watch the explicatory video.

## 2. Solving

(i) Prove Lemma 2.5 in the Lecture Notes $\# 2$.
(ii) For all examples given below draw the matroid polytope, determine its facets that intersect the interior of the ambient, and compare them with the flacets.
(a) The uniform matroids $U_{2,4}$ and $U_{2,3}$
(b) The matroid on [4] with circuit set $\{\{1,3\},\{2,4\}\}$
(c) The uniform matroid $U_{3,4}$
(d) The three matroids given by the diagrams below:


Turn page!
(iii) Prove the following statement: A matroid $M=(E, \mathcal{I})$ is disconnected (i.e., $c(M)>1$ ) if and only if there is a subset $A, \emptyset \subsetneq A \subsetneq E$, such that $M=M[A] \oplus M[E \backslash A] .\left({ }^{1}\right)$
(iv) Let $G$ be the graph depicted below and consider the matroids $M(G) / X$ and $M(G) / Y$, where $X$ is the set of blue edges, and $Y$ is the set of all bold-faced edges. Find graphs $G^{\prime}, G^{\prime \prime}$ such that $M\left(G^{\prime}\right) \simeq M(G) / X$ and $M\left(G^{\prime \prime}\right) \simeq M(G) / Y$.


Let now $M$ be an arbitrary matroid on the ground set $E$ and let $A \subseteq E$. What is the difference between $M / A$ and $M / \operatorname{cl}(A)$ ?

[^0]
[^0]:    ${ }^{1}$ Hint: choose $e \in E$ and let $A$ be the equivalence class of $e$ with respect to the equivalence relation $\sim_{M}$ defined in $\S 2.1$. of the Lecture notes $\# 2$.

