COMPlexes
A polyhedral complex is any collection K of polyhedra, such that simplicial complex simpliees
fan cones

1) K contains all faces of each of its members
2) Any two members of K intersect at a face of both.
simplex: $\sigma=\operatorname{conv}\left\{x_{01} \cdots, x_{\alpha}\right\}, \operatorname{dim}(\sigma)=d$
Simple. complex:

$$
K=\left\{\sigma_{1}, \sigma_{2}, l_{1}, \ldots, l_{5}, a_{1} \ldots a_{4}, \phi\right\}
$$

COMPLEXES
A polyhedral complex is any collection K of polyhedra, such that simplicial complex simplices
fan cones

1) K contains all faces of each of its members
2) Any two members of K intersect at a face of both.

Let K_{1} poly. complex in \mathbb{R}^{n}, K_{2} poly. ex. in \mathbb{R}^{m}.
A linear isomorphism $K_{\mu} \simeq \mathbb{K}_{2}$ is a linear $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ s.t.
the induced map $K_{1} \rightarrow K_{2}$ is bijective.

$$
Q \longmapsto \varphi(Q)
$$

Nortial fans
Let P be a polyhedron in \mathbb{R}^{n} and let we \mathbb{R}^{n}
Define:

$$
\begin{aligned}
{[P \nmid w]: } & =\underset{x \in P}{\arg \max }\langle x \mid w\rangle \\
& =\{x \in P \mid\langle x \mid w\rangle \geqslant\langle y \mid w\rangle \forall y \in P\}
\end{aligned}
$$

Let P be a polytupe, Q any face of P
Set

$$
\left.N_{Q}:=\left\{\omega \in \mathbb{R}^{n} \mid Q \subseteq[P \uparrow \omega]\right\}\right\}^{\text {"normal }} \text { cone }
$$

N_{Q} is a come, whose faces are $N_{Q^{\prime}}, Q^{\prime} \geqslant Q$

$$
N(P)=\left\{N_{Q}\right\}_{Q \text { face of } P} \begin{array}{ll}
\text { Normal } \\
\text { fan to } P
\end{array}
$$

$$
Q \leq[p(a)]|H \cdot Q|\left[+1 u^{N_{Q}}\right.
$$

$$
=N_{Q_{2}}
$$

