WARM-UP 1

1. About vectors

Think back to your Linear Algebra 1 class. If you have your textbook or lecture notes handy, look for "Steinitz's exchange theorem" ${ }^{1}$ The statement should be a variation of the following.
(S) Let $B=\left\{b_{1}, \ldots, b_{r}\right\}$ be a basis and $I=\left\{v_{1}, \ldots, v_{m}\right\}$ an independent set of the (finite-dimensional) vectorspace V. Then there are $i_{1}, \ldots, i_{m} \in\{1, \ldots, r\}$ such that $\left(B \backslash\left\{b_{i_{1}}, \ldots, b_{i_{m}}\right\}\right) \cup I$ is a basis of V.
(i) Try to prove (\mathbf{S}) and/or look it up in your old Linear Algebra materials. What definition or properties of "bases" are you using here?
(ii) Use (S) in order to prove the following statement.

Let I, J be linearly independent, finite subsets of a vectorspace V. If $|I|>|J|$, then there is $v \in I \backslash J$ such that $J \cup\{v\}$ is linearly independent in V.

2. About graphs

Graphs are often used in an intuitive fashion - they consist of "vertices joined by edges". Below are pictures of some possible examples of graphs.

Notice the possible presence of loops (edges "with only one endpoint") and "multiple edges" (often called parallel, as they share their endpoints). A graph without loops and without parallel edges is called simple. Notice that several standard graph theory textbooks only consider simple graphs. Here, we will need the more general notion.

A Trail in a graph is any finite sequence of (not necessarily distinct) edges in which any two consecutive members share a vertex. A path is a walk with no repeated edges or vertices. A cycle is any nonempty walk that is "closed" (i.e., such that the last vertex equals the starting vertex). A circuit is a nonempty closed path.

[^0](i) Try to find a rigorous definition of "graph with finitely many edges and vertices" that can model all of the above examples and, with it, give a formal definition of trail, path, cycle, circuit. I recommend that you try this yourself first. You can then compare your notion with one that can be found in the literature, and that I have summarized below after some white pages. Do not look yet!
(ii) The degree of a vertex in a graph is the number of edges that "touch" the given vertex, with loops counting two (example: all blue vertices in the pictures of the previous page have degree 3). Define the degree of a vertex in your formalism. Prove that if every vertex in a finite graph has degree at least two, then the graph must contain a cycle.
(iii) Let E be the set of edges of a finite graph G. Prove that for every $C \subseteq E$ the following are equivalent: (i) C is the set of edges of a circuit, (ii) C is the set of edges of an inclusion-minimal cycle (i.e., every nontrivial subset of C is not the set of edges of any cycle).
(iy) Prove that, if C_{1} and C_{2} are the set of edges of two distinct circuits of a finite graph G, and if $e \in C_{1} \cap C_{2}$ is a common edge, then there is a circuit C_{3} of G that is contained in $C_{1} \cup C_{2}$ but does not contain e (i.e., $\left.C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}\right)$.

Graphs

Definition 0.1. A graph $G=(V, E, h, t)$ is a quadruple consisting of a (finite) set of vertices V, a (finite) set of edges E and two functions $h, t: E \rightarrow V$ that assign to every edge its "ends". Given any set $A \subseteq E$ of edges we let $V(A):=h(A) \cup t(A)$ be the set of all ends of edges in A.

We will often omit braces when designing one-element sets, if no need for specification arises. For instance, given $e \in E$ we will write $V(e)$ for $V(\{e\})$.

Two edges with their ends.
A loop in G is any $e \in E$ with $|V(e)|=1$. Two edges $e, e^{\prime} \in E$ are called parallel if $V(e)=V\left(e^{\prime}\right)$. The graph G is called simple if it has no loops nor parallel edges. A trail in G is any sequence $v_{0}, e_{1}, v_{1}, \ldots, e_{k}, v_{k}$ of vertices and edges such that $\left\{v_{i-1}, v_{i}\right\}=\mathrm{V}\left(e_{i}\right)$ for all $i=1, \ldots, k$. It is called closed (or a "cycle") if $k>0$ and $v_{0}=v_{\mathrm{k}}$. A path is a trail where all edges and all vertices are pairwise distinct (in this case we will talk about a "path from v_{0} to v_{k} ". A circuit in G is a minimal closed trail, i.e., a closed trail which, after removal of any edge, is a path (in particular, every loop is a circuit).

Figure 1. A trail, a path, a circuit and a closed trail that is not a circuit.
Let $\mathrm{T} \subseteq \mathrm{V}$ be a set of vertices of G the vertex-induced subgraph defined by T is the graph $G(T):=\left(T, E^{\prime}, h, t\right)$ where $E^{\prime}=\{e \in E \mid\{h(e), t(e)\} \subseteq T\}$ is the set of edges with both endpoints in T.

Definition 0.2. Let G be a graph. We call G connected if for any two vertices $v, w \in$ V there is a path from v to w in G. A connected component of G is any maximal
connected vertex-induced subgraph, i.e., any vertex-induced subgraph $G(T)$ that is connected and such that, for every $v \in \mathrm{~V} \backslash \mathrm{~T}, \mathrm{G}(\mathrm{T} \cup\{v\})$ is not connected. We define

$$
\mathrm{c}(\mathrm{G}):=\text { the number of connected components of } \mathrm{G} .
$$

Definition 0.3. The degree of a vertex v is the number

$$
\operatorname{deg}(v):=\left|\mathrm{t}^{-1}(v)\right|+\left|\mathrm{h}^{-1}(v)\right|
$$

Definition 0.4 (Edge deletion). Let $G=(V, E, h, t)$ be a graph and let $A \subseteq E$. The deletion of A from G is the graph $G \backslash A:=\left(V, E \backslash A, h_{\mid E \backslash A}, t_{\mid E \backslash A}\right)$ on the same vertex set as G but without the edges in A, and with the functions h, t restricted accordingly. If $A=\{e\}$ consists of a single element, we sometimes write $G \backslash e$ for $G \backslash\{e\}$. The "restriction" of G to A is $G[A]:=G \backslash(E \backslash A)$.

Remark 0.5 (On the word "subgraph"). Every graph of the form $G[A]$ we will call a "subgraph" of G. Notice the difference with the notion of "vertex induced subgraph" discussed earlier on. The latter will not appear in the following, so we feel safe in our terminological choice.

[^0]: 1"Austauschsatz von Steinitz".

