$P \subseteq \mathbb{R}^{n}$ is a convex polytope if there are $v_{1} \cdots v_{k} \in \mathbb{R}^{n} \quad(k \notin \mathbb{N})$ with

$$
P=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid \sum_{i} \lambda_{i}=1, \lambda_{i} \geqslant 0 \quad \forall_{i}\right\}=\operatorname{conv}\left\{v_{1} \ldots, v_{k}\right\}
$$

In general, $K \subseteq \mathbb{R}^{n}$ convex if it contains the segment $t_{p}+(1-t) q, 0 \leq t \leq 1$ between any $p, q \in K$

The convex hull of $X \subseteq \mathbb{R}^{n}$ is the smallest convex set containing X

In fact: $P \subseteq \mathbb{R}^{n}$ is a convex pdytope if and only if it is the convex lull of a finite set of points

$P \subseteq \mathbb{R}^{n}$ is a convex polytope if there are $v_{1} \cdots v_{k} \in \mathbb{R}^{n} \quad(k+\mathbb{N})$ with

$$
P=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid \sum_{i} \lambda_{i}=1, \lambda_{i} \geqslant 0 \quad \forall i\right\}=\operatorname{conv}\left\{v_{1} \ldots, v_{k}\right\}
$$

The affine hull of $v_{1} \ldots v_{k}$ is

$$
a f f\left\{v_{1} \cdots v_{k}\right\}=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

The dimension of P is

$$
\operatorname{dim}(p)=\operatorname{dim}\left(\operatorname{aff}\left(v_{1} \ldots v_{u}\right)\right)
$$

which equals the dimension of the "translate at the origin"

$$
\left\langle v_{i}-v_{1} \mid i \geqslant 2\right\rangle
$$

$P \subseteq \mathbb{R}^{n}$ is a convex polytope if there are $v_{1} \ldots v_{k} \in \mathbb{R}^{n} \quad(k+\mathbb{N})$ with

$$
P=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid \sum_{i} \lambda_{i}=1, \lambda_{i} \geqslant 0 \quad \forall i\right\}=\operatorname{conv}\left\{v_{1} \ldots, v_{k}\right\}
$$

Given $w \in \mathbb{R}^{n}, c \in \mathbb{R}$, let

$$
H_{w, c}^{+}:=\left\{x \in \mathbb{R}^{n} \mid\langle w, x\rangle \geqq c\right\}_{\text {Affine hyp. }}^{\text {(AStiw) halfspace }}
$$

$H_{w, c}$ is valid for P if $P \subseteq H_{w, c}^{+}$
A face of P is any $F S P$ of the form

$F=P \cap H_{w, c}$ for valid $H_{w, c}$
Note: - $\phi \subseteq P$ and $P \subseteq P$ are faces of P

$$
R w=0, c=-1 \quad R \quad w=0, c=0
$$

- Every face of a polytope is a polytoge: $F=\operatorname{conv}\left(\left\{v_{1} \cdots v_{u}\right\} \cap H_{w, c}\right)$
- Faces of dimension 0 : vertices ; dim. 1: edges; $\operatorname{dim} \operatorname{dim}(P)-1:$ face
$P \subseteq \mathbb{R}^{n}$ is a convex polytope if there are $v_{1} \ldots v_{k} \in \mathbb{R}^{n} \quad(k+\mathbb{N})$ with

$$
P=\left\{\sum_{i=1}^{k} \lambda_{i} v_{i} \mid \sum_{i} \lambda_{i}=1, \lambda_{i} \geqslant 0 \quad \forall i\right\}=\operatorname{conv}\left\{v_{1} \ldots, v_{k}\right\}
$$

Given $w \in \mathbb{R}^{n}, c \in \mathbb{R}$, let

$$
H_{w, c}^{+}:=\left\{x \in \mathbb{R}^{n} \mid\langle w, x\rangle \geqq c\right\}_{\text {Affine hyp. }}^{\text {(AStiw) halfspace }}
$$

$H_{w, L}^{+}$is valid for P if $P \subseteq H_{w, c}^{+}$
Note: P is the intersection of all valid halfspaces.

A pobludron is any intersection of finitely many halts pa aces "Main theorem" for polytopes: $P \subseteq \mathbb{R}^{n}$ is a courses polytope if and only if it is a bounded polyludion.
$C \subseteq \mathbb{R}^{n}$ is a polyhedral come if theveare $p_{0} x_{1} \ldots x_{4} \in \mathbb{R}^{n} \quad(n \in \mathbb{N})$ sit.

$$
C=p+\underbrace{\left\{\sum_{i=1}^{k} \lambda_{i} x_{i} \mid \lambda_{i} \geqslant 0 \quad \forall i\right\}}_{\text {cone }\left\{x_{1} \cdots x_{k}\right\}}
$$

"Main theorem" for comes (implies the on for polytopes) $C \subseteq \mathbb{R}^{n}$ is a polyludval cone if and only if it is the intersection of finitely many halfspaces, all of whose bounding hyperplams, conterin a common point p.
Proof: she ziegler's book $\oint 1.3$
Structure theorem: $Q \subseteq \mathbb{R}^{n}$ is a polyludron if and only if

$$
Q=P^{B+C} \text { preludial cone. }
$$

