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NOTES FOR LECTURE 4

1. The tropical space associated to a matroid

Definition 1.1. Let M be a matroid on the ground set [n]. The associated tropical space is the
set

trop(M) :=

{
w ∈ Rn

∣∣∣∣ For every circuit C ∈ C(M) there are i, j ∈ C, i 6= j
such that wi = wj = min{wi | i ∈ C}

}
One commonly says that trop(M) is the set of vectors for which “the minimum is attained twice
on every circuit”.

Theorem 1.2. Let M be a matroid on the ground set [n]. Then,

trop(M) = B̃(M)

Proof. For all w ∈ Rn, w 6∈ trop(M) if and only if there is a circuit C of M and an element i ∈ [n]
with

wi < wj for all j ∈ C \ {i}. (1)

If this is the case, then for every basis B of M with i ∈ B we can find j ∈ C \ {i} such that
B′ := B \ {i} ∪ {j} is a basis of M . (Otherwise we would have j ∈ cl(B \ {i}) for all j ∈ C \ {i},
hence C \ {i} ⊆ cl(B \ {i}). Independence of B implies i 6∈ cl(B \ {i}), hence we would have
i 6∈ cl(C \ {i}), a contradiction to C being a circuit.) Then B′ has higher w-weight than B hence B
cannot be a basis of Mw. We conclude that i would not be in any basis of Mw, hence it is a loop

of Mw, witnessing w 6∈ B̃(M).
Conversely, if i is not in any basis of Mw, then for every basis B of Mw we have that the circuit

C contained in B∪{i} must satisfy (1), otherwise we could exchange i for another element of C∩B
and obtain a basis of higher w-weight than B. �

2. Arrangements of hyperplanes and geometric lattices

Definition 2.1. Let V be vectorspace of finite dimension d. An arrangement of hyperplanes in V
is a finite set

A := {H1, . . . ,Hn}
of codimension 1 linear subspaces of V . The poset of intersections of A is the set

L(A ) :=

{⋂
i∈I

Hi

∣∣∣∣∣ I ⊆ [n]

}
ordered by reverse inclusion: X ≤ Y if and only if X ⊇ Y .

Example 2.2. Let A be the arrangement in R3 consisting of the four planes

α : {x = 0}, β : {y = 0}, γ : {x = y}, δ : {z = 0},

depicted in Figure 1. Then L(A ) is the poset represented on the r.h.s. of Figure 1.
1
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Definition 2.3. A partially ordered set is a pair (P,≤) where P is a set and ≤ is a partial order,
i.e., an antisymmetric, transitive and reflexive relation on P . Often the relation ≤ is clear from the
context and we speak simply of “the poset P”.

Definition 2.4. A partially ordered set P is a lattice if, for any two elements p, q ∈ P ,

• the subposet P≥p ∩ P≥q of all upper bounds to p and q has a unique minimal element -
called join of p and q and denoted p ∨ q, and

• the subposet P≤p ∩ P≤q of all lower bounds to p and q has a unique maximal element -
called meet of p and q and denoted p ∧ q.

Notice that every finite lattice must have a unique minimal element (denoted by 0̂) and a unique

maximal element (written 1̂).

Definition 2.5. Let P be a poset with a unique minimal element 0̂ (we call such a P “bounded
below”). Then the atoms of P are the elements of the set

A(P ) := {p ∈ P | pm 0̂},
where here and in the following we write xm y when, for all z, x ≤ z < y implies x = z.

Recall that every finite lattice has a unique minimal element.

Definition 2.6. Let L be a finite lattice. We call L geometric if, for all x, y ∈ L:

(G) xl y if and only if there is p ∈ A(L), p 6≤ x, such that y = x ∨ p.

Example 2.7. Unique least upper bounds exist in L(A ) (for X,Y ∈ L(A ) take X ∨Y := X ∩Y ).
Moreover, since L(A ) is finite, this implies that unique greater lower bounds also exist (take
X ∧ Y := ∨{Z ∈ L(A ) | Z ≤ X,Z ≤ Y }). Thus, L(A ) is a finite lattice.

Now, the atoms of L(A ) are exactly the elements of A , i.e., the hyperplanes. The other nontrivial
elements of L(A ) are subspaces of V obtained as intersections of the hyperplanes. Notice here that
if W is any linear subspace and H is any hyperplane, the codimension of H ∩ W either equals
that of W (namely if H ⊇ W ) or else it surpasses it by one. Therefore, for W1,W2 ∈ L(A ),
we have W1 lW2 if and only if W2 = W1 ∩ H for some H 6⊇ W1 (i.e., W2 = W1 ∨ H for some
H ∈ A(L(A )), H 6≤ W1). In summary, we see that if A is an arrangement of hyperplanes, then
L(A ) is a geometric lattice.

3. Matroids “are” geometric lattices

3.1. Matroids from geometric lattices. In what follows we will derive from the definition some
properties of a geometric lattice that are “intuitively evident” for intersection posets of hyperplane
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arrangements. One of these properties is that intersection posets come with a function that assigns
to every intersection its codimension as a subspace of V , and this function increases exactly by one
along every covering relation. We say that intersection posets are ranked. More generally, we have
the following definition.

Definition 3.1. Let P be a poset. A rank function for P is a function ρ : P → N such that

(i) ρ(x) = 0 if x is a minimal element in P ,

(ii) ρ(x) + 1 = ρ(y) if xl y in P .

Remark 3.2. Notice that, if a bounded-below poset admits a rank function, then this function is
unique.

Before going forward, let us establish that the length of a chain ω = {x0 < . . . < xk} in a partially
ordered set P is `(ω) = |ω| − 1 = k. The length of the poset `(P ) then is the maximum length of
any chain in P .

Lemma 3.3. In a geometric lattice any two maximal chains between the same elements have the
same length.

Proof. Let L be a geometric lattice. We prove by induction the following statement (note that in
this proof, given a, b ∈ L, an (a, b)-chain is any chain in L of the form a = x0 < x1 < . . . < xk = b).

(∗t) For all a, b ∈ L, if one maximal (a, b)-chain has length t, then all of them do.

The premise of (∗1) can only be satisfied if al b. In this case there is only one maximal (a, b)-
chain, hence (∗1) holds.

Then let t ≥ 2 and suppose that (∗r) holds for all r < t. Consider two maximal (a, b)-chains

a = c0 l c1 l . . .l ct = b a = d0 l d1 l . . .l ds = b.

Now, if c1 = d1, then by induction hypothesis all maximal (c1, b)-chains have t− 1 elements, hence
s = t and we are done.

Suppose then c1 6= d1. By property (G) we can find x, y ∈ A(L)
with c1 = a ∨ x, d1 = a ∨ y. If x ≤ d1 (resp. y ≤ c1) we would
have c1 ≤ d1 (resp. d1 ≤ c1), reaching a contradiction; hence,
x 6≤ d1 (resp. y 6≤ c1). Again by (G), we compute c1 ∨ d1 =
a ∨ x ∨ y m d1, c1.
Now, by induction hypothesis applied to (c1, b), every maximal
(c1, b)-chain has length t − 1, and in particular every maximal
(c1 ∨ d1, b)-chain has length t − 2. In the same way, induction
hypothesis applied to (d1, b) gives that every (c1 ∨ d1, b)-chain
has length s− 2. We conclude s = t, and (∗t) holds.

�

Corollary 3.4. Every geometric lattice admits a rank function.

Proof. Given a geometric lattice L a rank function is given by choosing, for every x ∈ L,

ρ(x) := length of any maximal chain from 0̂ to x. (2)

Lemma 3.3 ensures that this is well-defined, and one readily checks that the conditions of Definition
3.1 are satisfied. �

Corollary 3.5. Let L be a geometric lattice with rank function ρ. For every X ⊆ A(L) we have
ρ(∨X) ≤ #X.
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Proof. First notice that by uniqueness of the rank function we know that ρ can be expressed as in
Equation (2). Induction on the cardinality of X. If X = ∅, ρ(∨X) = ρ(0̂) = 0 and the claim holds.

If #X > 0, choose x ∈ X and notice that either ∨(X \ {x}) = ∨X (when x ≤ ∨(X \ {x})) or, by

(G), ∨(X\{x})l∨X. In any case, a maximal chain from 0̂ to ∨X can be obtained by adding at most

one new element to a maximal chain from 0̂ to ∨(X \ {x}). Therefore, ρ(∨X) ≤ ρ(∨(X \ {x})) + 1
and by induction hypothesis this is at most #X. �

Lemma 3.6. Let L be a geometric lattice and ρ its1 rank function. Then, for all x, y ∈ L,

ρ(x) + ρ(y) ≥ ρ(x ∧ y) + ρ(x ∨ y).

Proof. Consider z := x ∧ y and any saturated chain z = z0 l z1,lz2,l · · ·l zk = y. Then,

k = ρ(y)− ρ(x ∧ y). (3)

By (G) we can choose atoms a1, . . . , ak so that ai ≤ zi, ai 6≤ zi−1 and zi = zi−1 ∨ ai for all
i = 1, . . . , k.

Define now elements w0, . . . , wk by setting w0 = x and wi := wi−1 ∨ ai for all i ≥ 1. Notice that
wk = x ∨ a1 ∨ . . . ∨ ak = x ∨ z ∨ a1 ∨ . . . ∨ ak = x ∨ y.

Then, by (G) we have either wi = wi−1 or wi−1 l wi for all i, so that k ≥ ρ(wk) − ρ(w0) =
ρ(x ∨ y)− ρ(x) and the claim follows by recalling Equation (3). �

We have proved the following.

Proposition 3.7. Let E be a finite set and let L ⊆ 2E a family of subsets of E, partially ordered
by inclusion and such that E ∈ L. Suppose further that L is a geometric lattice with rank function
ρ,with meet operation given by set intersection, and such that the union of the atoms of L equals
E. Then, for every X ⊆ E there is a unique minimal X ′ in L such that X ⊆ X ′, and the extension
r of ρ on 2E given by r(X) := ρ(X ′) is a matroid rank function.

Proof. The set X ′ exists for any given X because meets exist in L and are given by set intersection.
Axiom (R2) is trivially satisfied. For Axiom (R1) notice first that ρ is never negative by definition.

Moreover, given X ⊆ E we can consider a minimal family A1, . . . , Ak of all atoms of L such that
X ⊆

⋃
iAi (this is possible since E =

⋃
iAi). Then surely k ≤ |X| and X ⊆

∨
iAi. Thus,

X ′ ≤
∨

iAi in L, and by Corollary 3.5 ρ(
∨

iAi) ≤ k. Thus r(X) = ρ(X ′) ≤ k ≤ |X| as desired.
We now turn to Axiom (R3). First notice that, trivially, X ′ ∧ Y ′ ≥ (X ∩ Y )′. By definition,

X ′ ∨ Y ′ is the minimal element of L containing X ′ and Y ′, while (X ∪ Y )′ is the minimal element
of L containing X and Y . Since X ⊆ X ′ and Y ⊆ Y ′, we have X ′∨Y ′ ≥ (X ∪Y )′. With the trivial
inequality X ′ ∨ Y ′ ≤ (X ∪ Y )′ we obtain X ′ ∨ Y ′ = (X ∪ Y )′.

Now using Lemma 3.6 and the monotony of ρ we can write

r(X) + r(Y )
df
= ρ(X ′) + ρ(Y ′)

≥ ρ(X ′ ∧ Y ′) + ρ(X ′ ∨ Y ′) ≥ ρ((X ∩ Y )′) + ρ((X ∪ Y )′)

df
= r(X ∩ Y ) + r(X ∪ Y )

�

Corollary 3.8. Given any (abstract) geometric lattice L, we can associate to every x ∈ L the set
A(x) of all atoms of L below x. Then, L is isomorphic to the set L′ := {A(x) | x ∈ L} ordered by
inclusion (since x < y if and only if A(x) ⊂ A(y)). The matroid constructed from the proposition,
then, has the set A(L) of all atoms as a ground set and rank function given by r(X) = ρ(∨X) for
all X ⊆ A(L). This matroid has no loops, and it is referred to as the ”simple matroid associated to
L.

1Unique by Remark 3.2
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Example 3.9. Let us consider the geometric lattice from Figure 1. The set of atoms is {α, β, γ, δ},
and the associated geometric lattice L′ in Corollary 3.8 is as follows.

{α} {β} {γ} {δ}

{α, β, γ} {α, δ} {β, δ} {γ, δ}

{α, β, γ, δ}

∅
The claim of Corollary 3.8 is then that this is the lattice of flats of a matroid on E = {α, β, γ, δ}

with rank function given by r(A) = |A| if |A| ≤ 2, r({α, β, γ}) = 2, and r(A) = 3 for all A with
A 6= {α, β, γ} and |A| ≥ 3.

3.2. Geometric lattices from matroids. We aim at a “converse” of Proposition 3.7, constructing
a geometric lattice for every given matroid.

Let E be a finite set and rk : 2E → N a matroid rank function. Recall from Lecture 2 the notion
of flats and of closure operator associated to a matroid.

Definition 3.10. Let Lrk be the poset of all closed sets ordered by inclusion (i.e., for F, F ′ ∈ Lrk

we have F ≤ F ′ if F ⊆ F ′).

Example 3.11.

If M=MCG) for [6)

G : 12345 126 136 1456

•

o ,
then [ CM) is

q⑧-•↳ 12 23 145 16

y 3

1

Example 3.12. Consider the rank function rk : 2[4] → N defined by rk(X) = 1 if |X| ≤ 1 and
rk(X) = 2 otherwise. This is the rank function of the uniform matroid U2,4. The associated poset
of flats is depicted below.

[4]

1 2 3 4

∅

Our next goal is to prove that, in general, Lrk is a geometric lattice.

Lemma 3.13. Let rk be a matroid rank function. Then, meet and join of every F1, F2 ∈ Lrk exist.
In fact,

(1) F1 ∨ F2 = cl(F1 ∪ F2)
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(2) F1 ∧ F2 = F1 ∩ F2

In particular, Lrk is a lattice.

Proof.

(1) By definition of the ordering, every element of (Lrk)≥F1
∩ (Lrk)≥F2

must contain F1 ∪ F2.
But, e.g. by Corollary 1.9 in Lecture 2, cl(F1 ∪ F2) is the (unique) smallest closed set
containing F1 ∪ F2.

(2) It is enough to prove that F1 ∩ F2 is closed, which was done in Lemma 1.8 of Lecture 1.

�

Recall (e.g., from Corollary 1.9 in Lecture 2) that the closure operator cl is monotone (X ⊆ Y
implies cl(X) ⊆ cl(Y )) and increasing (X ⊆ cl(X)).

Remark 3.14. If X < Y in Lrk, then rk(X) < rk(Y ). Otherwise, by (R2) we would have
rk(X) = rk(Y ) and so, since Y ⊆ X by assumption, X = Y – a contradiction.

Proposition 3.15. For any F1, F2 ∈ Lrk, (G) holds. I.e.,

F1 l F2 ⇔ ∃P ∈ A(Lrk), P 6≤ F1, s.t. F2 = F1 ∨ P.

Proof.

⇐ Let P be as in the claim. Since P is an atom, P = cl({e}) for some element e ∈ E and,
since P 6≤ F1, it must be e ∈ E \ F1 Now we can write F2 as

F2 = F1 ∨ P = cl(F1 ∪ P ) = cl(F1 ∪ {e})
(we have used Lemma 3.13 in the middle equality) and we have

rk(F1) + rk({e}) ≥ rk(∅) + rk(F1 ∪ {e}).
Now, rk({e}) = rk(cl(e)) and since P = cl({e}) has rank 1, rk({e}) = 1. Thus

rk(F2) = rk(F ∪ {e}) ≤ rk(F1) + 1.

Moreover, since F1 is closed and e 6∈ F1 we have rk(F1 ∪ {e}) > rk(F1), and we conclude
that rk(F2) = rk(F1) + 1.

Now by Remark 3.14 any Z ∈ Lrk, F1 < Z < F2, would force rk(F2) ≥ rk(F1) + 2, hence
a contradiction. We conclude F1 l F2.

⇒ F1 l F2 implies F1 ( F2 and so we can choose e ∈ F2 \ F1. Then rk({e}) = 1 since
otherwise e is in the closure of every flat, in particular we would have e ∈ F1. It follows
that P := cl({e}) is an atom of Lrk, and P ≤ F2 by monotonicity of the closure operator.
Now define

F := F1 ∨ P = cl(F1 ∪ {e}).
Then the following claim concludes the proof.

Claim. F2 = F .

Proof. We have

rk(F ) ≥ rk(F1) + 1 = rk(F2). (4)

The inequality holds since F ⊇ F1 ∪ {e}, F1 is closed and e 6∈ F1, the equality is
immediate since F1 l F2.
Now since F1 ∪ {e} ⊆ F2, monotonicity of cl implies F ⊆ F2. Together with Equation
(4) this shows F = F2.

�

Theorem 3.16. Let rk be any matroid rank function. Then the poset Lrk is a geometric lattice
whose rank function ρ satisfies ρ(F ) = rk(F ) for every F ∈ Lrk.
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Proof. That Lrk is a geometric lattice follows from Lemma 3.13 and Proposition 3.15. For the claim
about rank consider any F ∈ Lrk and let 0̂lF1 l . . .lFk = F be a maximal chain below F . Then,
ρ(F ) = k.

Choose atoms A1, . . . , Ak with Fi = Fi−1∨Ai for all i. Since every Fi−1 is closed and Ai 6⊆ Fi−1,
we must have

rk(Fi−1) > rk(Fi−1 ∪Ai) = rk(Fi) (5)

(the last equality by 3.13.(1)). On the other hand, (R2) implies

rk(Fi−1) + rk(Ai) ≥ rk(Fi−1 ∩Ai︸ ︷︷ ︸
=0̂

) + rk(Fi−1 ∪Ai) = rk(Fi) (6)

and since rk(Ai) = 1 because of Equations (5) and (6), we conclude rk(Fi) = rk(Fi−1) + 1, thus
r(X) = rk(Fk) = k = ρ(X).

�

4. Back to business: Arrangements

4.1. The one and only rank function. At this stage we have two, a priori different, rank
functions associated to an arrangement A = {H1, . . . ,Hm} of hyperplanes:

• The rank function rlat of the simple matroid associated to the geometric lattice L(A ) as
in Theorem 3.8:

rlat : 2[m] → N, I 7→ ρ

(∨
i∈I

Hi

)
• The rank function rdep of the matroid of linear dependencies of the [n]-tuple of vectors
{n1, . . . , nm}, where ni is any choice of normal vector for the hyperplane Hi:

rdep : 2[m] → N, I 7→ dim span{vi | i ∈ I}.

Our next goal is to show that they are the same.

Lemma 4.1. For every intersection X ∈ L(A ) we have ρ(X) = codimX

Proof. By definition ρ(X) = k means that k is the length of a maximal chain 0̂lX1l · · ·lXk = X.
Now consider the subspaces Xi. By property (G), every Xi is of the form Xi−1 ∩Hi for some atom
Hi of L(A ) (i.e., hyperplane in A ) with Hi 6≤ Xi−1 (i.e., Hi 6⊇ Xi−1). Notice that the latter
implies that Xi−1 +Hi = Rd, the ambient space. Now, elementary linear algebra tells us that

dim(Xi−1 ∩Hi︸ ︷︷ ︸
=Xi

) + dim(Xi−1 +Hi)︸ ︷︷ ︸
=d

= dim(Xi−1) + dim(Hi)︸ ︷︷ ︸
d−1

and thus dim(Xi) = dim(Xi−1)− 1. Therefore, X has dimension k less than 0̂ = Rd, and the proof
is complete. �

Proposition 4.2.

rlat ≡ rdep.

Proof. Let I ⊆ [m] and write X :=
∨

i∈I Hi =
⋂

i∈I Hi Then, with 4.1 we know that rlat(I) =
ρ(X) = codim(X). On the other hand, rdep(I) equals the rank of the d × |I| matrix M whose
columns are vi for i in I. Now, X is the subspace of all points that are orthogonal to each
vi, i ∈ I, and therefore X = kerM . Now, again by elementary linear algebra we know that
dim kerM = d− rankM . We summarize and conclude

rdep(I) = rankM = d− dim kerM = d− dimX = codim(X) = rlat(I)

�
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4.2. Arrangements’ complements.

Definition 4.3. Let A be an arrangement of hyperplanes in V . The complement of A is the space

M(A ) := V \ ∪A

The space M(A ) is a fascinating object, especially in the case where V is a complex vectorspace
– more on this later.

Notation 4.4. Let K denote a field and let A = {H1, . . . ,Hn} denote an arrangement of hyper-
planes in Kd.

Suppose for simplicity that ∩A = {0}.

We want to find a special ”parametrization” of M(A ). For every i = 1, . . . , n let ai denote a
(arbitrary) normal vector to Hi, and let A := [a1 · · · an] be the d×n matrix whose columns are the
vectors ai.

Let b1, . . . , bd denote the rows of A. Since ∩A = {0}, we know that A has full rank and hence
the bi are linearly independent, so that the transpose

At : Kd → Kn, x 7→ Atx

is an injective linear map, whose image is the rowspace V of A (i.e., V = imAt).
Notice that x ∈ Hi if and only if 〈x|ai〉 = 0, if and only if (Atx)i = 0. If we call f : Kd → V

the restriction to the map At to V , and letting Ei := {xi = 0} be the i-th coordinate hyperplane
in Kn, we have:

The function f is an invertible linear function between Kd and V that maps M(A ) to V ∩ (K∗)n.

In particular, the study of either of those spaces is equivalent. In order to characterise the latter
space by polynomial equalities, notice that for every y ∈ Kn we have ytV = 0 if and only if ytbi = 0
for all i or equivalently, since the bi are the rows of A, y ∈ kerA.

Now, y ∈ kerA if and only if the coordinates of y are the coefficients of a linear dependency
among the ai. We are led to consider the matroid M({a1, . . . , an}) that we call henceforth just M .

Lemma 4.5. For every C ∈ C(M) there is v(C) ∈ kerA such that v(C)i = 0 for all i 6∈ C. The
vector v(C) is uniquely determined up to a nonzero scalar multiple.

Proof. The existence of v(C) follows from the very definition of a circuit of the matroid M(A). For
the uniqueness part suppose that there is a v′(C) with the same support as v(C) and with i, j ∈ C
with v(C)i/v

′(C)i 6= v(C)j/v
′(C)j . Then the difference v(C)− vi(C)

v′
i(C)v

′(C) is again in kerA, hence

it defines a linear dependency among the ai, but its support is nonempty (since it contains j) and
strictly smaller than C (since it does not contain i), a contradiction to C being a circuit. �

Lemma 4.6. The set {v(C) | C ∈ C(M)} spans kerA.

Proof. Let v ∈ kerA. By definition, D := {i ∈ [n] | vi 6= 0} is a dependent set in M(A), hence
it contains a circuit C. If C = D then by Lemma 4.5 v is a multiple of v(C) and we are done.
Otherwise, choose i ∈ C and let λ ∈ K be such that λvi = v(C)i. Then, v′ = λv − v(C) is an
element of kerA with set of nonzero coordinates strictly contained in D (since v′i = 0). Repeat then
the argument with v′ and, since D is finite, eventually we will terminate with a v′···′ whose support
is a circuit. �

We conclude that V is defined as the locus of common solutions of the set of equations{∑
i

v(C)ixi = 0, one for each C ∈ C(M)

}
(7)
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In particular, if K = C, then M(A ) is equivalent to the subvariety of the complex torus (C∗)n
defined by the Equations (7). In this very special case, the tropicalization of M(A ) is the locus
of all w ∈ Rn/1R such that

min
i∈C
{w1, . . . , wn} is attained twice., for each C ∈ C(M).

Therefore:

The tropicalization of M(A ) is the Bergman fan B̃(M(A)),
where A is any matrix whose columns are a set of normals for the hyperplanes in A .

5. More on flats and abstract simplicial complexes

5.1. Direct sums, again. We have seen the notion of direct sum of matroids in terms of bases.
Our goal is to prove the following

Theorem 5.1. Let M1, M2 be matroids on disjoint ground sets. Then,

L(M1 ⊕M2) = L(M1)× L(M2).

First of all, let us explain the expression on the right-hand side.

Definition 5.2. Let (P,≤P ), (Q,≤Q) be partially ordered sets. Their cartesian product is the poset
P ×Q,≤P×Q), i.e., the cartesian product of the sets P and Q with a partial order defined by

(p1, q2) ≤P×Q (p2, q2) iff p1 ≤P p2, q1 ≤Q q2.

Example 5.3. The poset of all (nonnegative) divisors of 36 is the product of the posets of (non-
negative) divisors of 4 and of 9.

We continue our way towards Theorem 5.1 by exploring the notion of direct sum of matroids in
terms of cryptomorphisms other than via bases.

Lemma 5.4. Let M1, M2 be matroids on disjoint ground sets E1, E2.

(1) For X ⊆ E1 ∪ E2, rkM1⊕M2
(X) = rkM1

(X ∩ E1) + rkM2
(X ∩ E2).

(2) A set F ⊆ E1 ∪ E2 is a flat of M1 ⊕M2 if and only if F ∩ Ei is a flat of Mi for i = 1, 2.

Proof.

(1) The rank rkM1⊕M2
(X) is the size of a maximal independent subset I ⊆ X. Fom the

definition of direct sum we have that I is independent in M1 ⊕M2 if and only if I ∩ Ei is
independent in Mi, for i = 1, 2. Now, if I ∩E1 is not M1- maximal independent in X ∩E1,
then it is contained in such a maximal independent I ′1, and I ∪ I ′1 ⊆ X is independent in
the direct sum and strictly larger than I, a contradiction. Therefore I ∩ Ei is maximal
independent in X ∩Ei with respect to Mi for both i, and so rkM1⊕M2

(X) = |I| = |I ∩E1|+
|I ∩ E2| = rkM1

(X ∩ E1) + rkM2
(X ∩ E2).

(2) An F ⊆ E1 ∪ E2 is a flat if and only if rkM1⊕M2(F ∪ {e}) > rkM1⊕M2(F ) for all e ∈
(E1 ∪ E2) \ F . But for every such e, say with e ∈ E1, we have

rkM1⊕M2
(F ∪ {e}) = rkM1

((F ∩ E1) ∪ {e}) + rkM2
(F ∩ E2)

and this is strictly greater than rkM1⊕M2(F ) if and only if rkM1(F∩E1∪{e}) > rkM1(F∩E1).
The same computation goes if e ∈ E2, and the claim follows.

�
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5.2. Abstract and geometric simplicial complexes. In the warmup to Lecture 3 we introduced
the notion of a simplicial complex as a collection K of simplices in Euclidean space such that (1) the
collection contains all faces of each of its members (2) any two members of the collection intersect
at a face of both.

Given a simplex S let V (S) denote the set of vertices of S, and let V be the set of all vertices
of simplices in K . Since the convex hull of every subset of the vertices of a simplex is a (different)
face of the simplex itself, the collection

Σ(K ) = {V (S) | S ∈ K }

satisfies:

(ASC) σ ∈ Σ and τ ⊆ σ implies τ ∈ Σ.

Definition 5.5. Every collection Σ of subsets of a given finite set that satisfies (ASC) is called an
abstract simplicial complex.

Proposition 5.6 (Without proof). For every abstract simplicial complex Σ on a finite set V there
is a (geometric) simplicial complex KΣ in Rn (for n big enough) such that, after identifying elements
of V with the corresponding points in Rn, we have Σ = Σ(KΣ).

We write

‖Σ‖ :=
⋃

S∈KΣ

S

for what we call the “geometric realization” of the abstract simplicial complex Σ. This is justified
by the fact (also without proof) that any choice of KΣ yields a homeomorphic space ‖Σ‖.

Now, if P is a finite poset then we write ∆(P ) := {{p1, . . . , pn} ⊆ P | p1 < p2 < . . . < pn} for
the family of all totally ordered subsets of P . Clearly this is an abstract simplicial complex, called
the order complex of P . We write for short

‖P‖ := ‖∆(P )‖

for the geometric realization of the order complex.

In particular, we can say that the tropicalization of M(A ) is combinatorially isomorphic to the

cone over (a realization of) the simplicial complex ∆(L(A ) \ {0̂, 1̂}) – the latter we know to be
isomorphic to the Bergman complex B(M).

Another proposition that we list without proof is the following.

Proposition 5.7. Let P and Q be finite posets. Then ‖∆(P ×Q)‖ is homeomorphic to ‖∆(P )‖×
‖∆(Q)‖

Notice that the cartesian product of simplicial complexes appearing in the proposition is properly
a polyhedral complex (since products of simplices are not simplices, but just polytopes).

Corollary 5.8. Let M be a matroid. Then the Bergman complex is the product of the Bergman
complexes of the connected components of M .

6. References and complementary literature

Section 1 is again based on [3]. The exposition in Section 3 follows only partially [4] and [1].
Proofs of the statements that appear without justification in the last part of Section 5 can be found
in [2, Sections B.3, C.2, C.3].
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