NOTES FOR LECTURE 4

1. The tropical space associated to a matroid

Definition 1.1. Let M be a matroid on the ground set [n]. The associated tropical space is the set

$$\operatorname{trop}(M) := \left\{ w \in \mathbb{R}^n \mid \text{For every circuit } C \in \mathcal{C}(M) \text{ there are } i, j \in C, i \neq j \\ \text{such that } w_i = w_j = \min\{w_i \mid i \in C\} \right\}$$

One commonly says that trop(M) is the set of vectors for which "the minimum is attained twice on every circuit".

Theorem 1.2. Let M be a matroid on the ground set [n]. Then,

$$\operatorname{trop}(M) = \mathscr{B}(M)$$

Proof. For all $w \in \mathbb{R}^n$, $w \notin \operatorname{trop}(M)$ if and only if there is a circuit C of M and an element $i \in [n]$ with

$$w_i < w_j \text{ for all } j \in C \setminus \{i\}.$$

$$\tag{1}$$

If this is the case, then for every basis B of M with $i \in B$ we can find $j \in C \setminus \{i\}$ such that $B' := B \setminus \{i\} \cup \{j\}$ is a basis of M. (Otherwise we would have $j \in \operatorname{cl}(B \setminus \{i\})$ for all $j \in C \setminus \{i\}$, hence $C \setminus \{i\} \subseteq \operatorname{cl}(B \setminus \{i\})$. Independence of B implies $i \notin \operatorname{cl}(B \setminus \{i\})$, hence we would have $i \notin \operatorname{cl}(C \setminus \{i\})$, a contradiction to C being a circuit.) Then B' has higher w-weight than B hence B cannot be a basis of M_w . We conclude that i would not be in any basis of M_w , hence it is a loop of M_w , witnessing $w \notin \widetilde{\mathscr{B}}(M)$.

Conversely, if *i* is not in any basis of M_w , then for every basis *B* of M_w we have that the circuit *C* contained in $B \cup \{i\}$ must satisfy (1), otherwise we could exchange *i* for another element of $C \cap B$ and obtain a basis of higher *w*-weight than *B*.

2. Arrangements of hyperplanes and geometric lattices

Definition 2.1. Let V be vectorspace of finite dimension d. An arrangement of hyperplanes in V is a finite set

$$\mathscr{A} := \{H_1, \dots, H_n\}$$

of codimension 1 linear subspaces of V. The poset of intersections of \mathscr{A} is the set

$$\mathcal{L}(\mathscr{A}) := \left\{ \bigcap_{i \in I} H_i \middle| I \subseteq [n] \right\}$$

ordered by reverse inclusion: $X \leq Y$ if and only if $X \supseteq Y$.

Example 2.2. Let \mathscr{A} be the arrangement in \mathbb{R}^3 consisting of the four planes

$$\alpha: \{x = 0\}, \quad \beta: \{y = 0\}, \quad \gamma: \{x = y\}, \quad \delta: \{z = 0\},$$

depicted in Figure 1. Then $\mathcal{L}(\mathscr{A})$ is the poset represented on the r.h.s. of Figure 1.

FIGURE 1

Definition 2.3. A partially ordered set is a pair (P, \leq) where P is a set and \leq is a *partial order*, i.e., an antisymmetric, transitive and reflexive relation on P. Often the relation \leq is clear from the context and we speak simply of "the poset P".

Definition 2.4. A partially ordered set P is a *lattice* if, for any two elements $p, q \in P$,

- the subposet $P_{\geq p} \cap P_{\geq q}$ of all upper bounds to p and q has a unique minimal element called *join* of p and q and denoted $p \lor q$, and
- the subposet $P_{\leq p} \cap P_{\leq q}$ of all lower bounds to p and q has a unique maximal element called *meet* of p and q and denoted $p \wedge q$.

Notice that every finite lattice must have a unique minimal element (denoted by $\hat{0}$) and a unique maximal element (written $\hat{1}$).

Definition 2.5. Let P be a poset with a unique minimal element $\hat{0}$ (we call such a P "bounded below"). Then the *atoms* of P are the elements of the set

$$A(P) := \{ p \in P \mid p \ge \widehat{0} \},\$$

where here and in the following we write x > y when, for all $z, x \le z < y$ implies x = z.

Recall that every finite lattice has a unique minimal element.

Definition 2.6. Let L be a finite lattice. We call L geometric if, for all $x, y \in L$:

(G) $x \leq y$ if and only if there is $p \in A(L)$, $p \leq x$, such that $y = x \lor p$.

Example 2.7. Unique least upper bounds exist in $\mathcal{L}(\mathscr{A})$ (for $X, Y \in \mathcal{L}(\mathscr{A})$ take $X \vee Y := X \cap Y$). Moreover, since $\mathcal{L}(\mathscr{A})$ is finite, this implies that unique greater lower bounds also exist (take $X \wedge Y := \vee \{Z \in \mathcal{L}(\mathscr{A}) \mid Z \leq X, Z \leq Y\}$). Thus, $\mathcal{L}(\mathscr{A})$ is a finite lattice.

Now, the atoms of $\mathcal{L}(\mathscr{A})$ are exactly the elements of \mathscr{A} , i.e., the hyperplanes. The other nontrivial elements of $\mathcal{L}(\mathscr{A})$ are subspaces of V obtained as intersections of the hyperplanes. Notice here that if W is any linear subspace and H is any hyperplane, the codimension of $H \cap W$ either equals that of W (namely if $H \supseteq W$) or else it surpasses it by one. Therefore, for $W_1, W_2 \in \mathcal{L}(\mathscr{A})$, we have $W_1 \ll W_2$ if and only if $W_2 = W_1 \cap H$ for some $H \supseteq W_1$ (i.e., $W_2 = W_1 \vee H$ for some $H \in A(\mathcal{L}(\mathscr{A})), H \not\leq W_1$). In summary, we see that if \mathscr{A} is an arrangement of hyperplanes, then $\mathcal{L}(\mathscr{A})$ is a geometric lattice.

3. Matroids "are" geometric lattices

3.1. Matroids from geometric lattices. In what follows we will derive from the definition some properties of a geometric lattice that are "intuitively evident" for intersection posets of hyperplane

arrangements. One of these properties is that intersection posets come with a function that assigns to every intersection its codimension as a subspace of V, and this function increases exactly by one along every covering relation. We say that intersection posets are *ranked*. More generally, we have the following definition.

Definition 3.1. Let P be a poset. A rank function for P is a function $\rho: P \to \mathbb{N}$ such that

- (i) $\rho(x) = 0$ if x is a minimal element in P,
- (ii) $\rho(x) + 1 = \rho(y)$ if $x \leq y$ in P.

Remark 3.2. Notice that, if a bounded-below poset admits a rank function, then this function is unique.

Before going forward, let us establish that the *length* of a chain $\omega = \{x_0 < \ldots < x_k\}$ in a partially ordered set P is $\ell(\omega) = |\omega| - 1 = k$. The length of the poset $\ell(P)$ then is the maximum length of any chain in P.

Lemma 3.3. In a geometric lattice any two maximal chains between the same elements have the same length.

Proof. Let L be a geometric lattice. We prove by induction the following statement (note that in this proof, given $a, b \in L$, an (a, b)-chain is any chain in L of the form $a = x_0 < x_1 < \ldots < x_k = b$).

 $(*_t)$ For all $a, b \in L$, if one maximal (a, b)-chain has length t, then all of them do.

The premise of $(*_1)$ can only be satisfied if $a \leq b$. In this case there is only one maximal (a, b)-chain, hence $(*_1)$ holds.

Then let $t \ge 2$ and suppose that $(*_r)$ holds for all r < t. Consider two maximal (a, b)-chains

$$a = c_0 \leqslant c_1 \leqslant \ldots \leqslant c_t = b$$
 $a = d_0 \leqslant d_1 \leqslant \ldots \leqslant d_s = b.$

Now, if $c_1 = d_1$, then by induction hypothesis all maximal (c_1, b) -chains have t - 1 elements, hence s = t and we are done.

Suppose then $c_1 \neq d_1$. By property (G) we can find $x, y \in A(L)$ with $c_1 = a \lor x$, $d_1 = a \lor y$. If $x \leq d_1$ (resp. $y \leq c_1$) we would have $c_1 \leq d_1$ (resp. $d_1 \leq c_1$), reaching a contradiction; hence, $x \not\leq d_1$ (resp. $y \not\leq c_1$). Again by (G), we compute $c_1 \lor d_1 = a \lor x \lor y > d_1, c_1$.

Now, by induction hypothesis applied to (c_1, b) , every maximal (c_1, b) -chain has length t - 1, and in particular every maximal $(c_1 \lor d_1, b)$ -chain has length t - 2. In the same way, induction hypothesis applied to (d_1, b) gives that every $(c_1 \lor d_1, b)$ -chain has length s - 2. We conclude s = t, and $(*_t)$ holds.

Corollary 3.4. Every geometric lattice admits a rank function.

Proof. Given a geometric lattice L a rank function is given by choosing, for every $x \in L$,

 $\rho(x) := \text{ length of any maximal chain from } \widehat{0} \text{ to } x.$ (2)

Lemma 3.3 ensures that this is well-defined, and one readily checks that the conditions of Definition 3.1 are satisfied.

Corollary 3.5. Let L be a geometric lattice with rank function ρ . For every $X \subseteq A(L)$ we have $\rho(\forall X) \leq \#X$.

Proof. First notice that by uniqueness of the rank function we know that ρ can be expressed as in Equation (2). Induction on the cardinality of X. If $X = \emptyset$, $\rho(\lor X) = \rho(\widehat{0}) = 0$ and the claim holds.

If #X > 0, choose $x \in X$ and notice that either $\lor(X \setminus \{x\}) = \lor X$ (when $x \leq \lor(X \setminus \{x\})$) or, by (G), $\lor(X \setminus \{x\}) \lessdot \lor X$. In any case, a maximal chain from $\widehat{0}$ to $\lor X$ can be obtained by adding at most one new element to a maximal chain from $\widehat{0}$ to $\lor(X \setminus \{x\})$. Therefore, $\rho(\lor X) \leq \rho(\lor(X \setminus \{x\})) + 1$ and by induction hypothesis this is at most #X.

Lemma 3.6. Let L be a geometric lattice and ρ its¹ rank function. Then, for all $x, y \in L$,

$$\rho(x) + \rho(y) \ge \rho(x \land y) + \rho(x \lor y)$$

Proof. Consider $z := x \wedge y$ and any saturated chain $z = z_0 < z_1 < z_2 < \cdots < z_k = y$. Then,

$$k = \rho(y) - \rho(x \wedge y). \tag{3}$$

By (G) we can choose atoms a_1, \ldots, a_k so that $a_i \leq z_i, a_i \leq z_{i-1}$ and $z_i = z_{i-1} \vee a_i$ for all $i = 1, \ldots, k$.

Define now elements w_0, \ldots, w_k by setting $w_0 = x$ and $w_i := w_{i-1} \lor a_i$ for all $i \ge 1$. Notice that $w_k = x \lor a_1 \lor \ldots \lor a_k = x \lor z \lor a_1 \lor \ldots \lor a_k = x \lor y$.

Then, by (G) we have either $w_i = w_{i-1}$ or $w_{i-1} < w_i$ for all i, so that $k \ge \rho(w_k) - \rho(w_0) = \rho(x \lor y) - \rho(x)$ and the claim follows by recalling Equation (3).

We have proved the following.

Proposition 3.7. Let E be a finite set and let $\mathcal{L} \subseteq 2^E$ a family of subsets of E, partially ordered by inclusion and such that $E \in \mathcal{L}$. Suppose further that \mathcal{L} is a geometric lattice with rank function ρ ,with meet operation given by set intersection, and such that the union of the atoms of \mathcal{L} equals E. Then, for every $X \subseteq E$ there is a unique minimal X' in \mathcal{L} such that $X \subseteq X'$, and the extension r of ρ on 2^E given by $r(X) := \rho(X')$ is a matroid rank function.

Proof. The set X' exists for any given X because meets exist in \mathcal{L} and are given by set intersection. Axiom (R2) is trivially satisfied. For Axiom (R1) notice first that ρ is never negative by definition. Moreover, given $X \subseteq E$ we can consider a minimal family A_1, \ldots, A_k of all atoms of \mathcal{L} such that

 $X \subseteq \bigcup_i A_i$ (this is possible since $E = \bigcup_i A_i$). Then surely $k \leq |X|$ and $X \subseteq \bigvee_i A_i$. Thus, $X' \leq \bigvee_i A_i$ in \mathcal{L} , and by Corollary 3.5 $\rho(\bigvee_i A_i) \leq k$. Thus $r(X) = \rho(X') \leq k \leq |X|$ as desired. We now turn to Axiom (R3). First notice that, trivially, $X' \wedge Y' \geq (X \cap Y)'$. By definition, $X' \vee Y'$ is the minimal element of \mathcal{L} containing X' and Y', while $(X \cup Y)'$ is the minimal element

 $X' \vee Y'$ is the minimal element of \mathcal{L} containing X' and Y', while $(X \cup Y)'$ is the minimal element of \mathcal{L} containing X and Y. Since $X \subseteq X'$ and $Y \subseteq Y'$, we have $X' \vee Y' \ge (X \cup Y)'$. With the trivial inequality $X' \vee Y' \le (X \cup Y)'$ we obtain $X' \vee Y' = (X \cup Y)'$.

Now using Lemma 3.6 and the monotony of ρ we can write

$$r(X) + r(Y) \stackrel{df}{=} \rho(X') + \rho(Y')$$

$$\geq \rho(X' \wedge Y') + \rho(X' \vee Y') \geq \rho((X \cap Y)') + \rho((X \cup Y)')$$

$$\stackrel{df}{=} r(X \cap Y) + r(X \cup Y)$$

Corollary 3.8. Given any (abstract) geometric lattice \mathcal{L} , we can associate to every $x \in \mathcal{L}$ the set A(x) of all atoms of \mathcal{L} below x. Then, \mathcal{L} is isomorphic to the set $\mathcal{L}' := \{A(x) \mid x \in \mathcal{L}\}$ ordered by inclusion (since x < y if and only if $A(x) \subset A(y)$). The matroid constructed from the proposition, then, has the set $A(\mathcal{L})$ of all atoms as a ground set and rank function given by $r(X) = \rho(\lor X)$ for all $X \subseteq A(\mathcal{L})$. This matroid has no loops, and it is referred to as the "simple matroid associated to \mathcal{L} .

¹Unique by Remark 3.2

Example 3.9. Let us consider the geometric lattice from Figure 1. The set of atoms is $\{\alpha, \beta, \gamma, \delta\}$, and the associated geometric lattice \mathcal{L}' in Corollary 3.8 is as follows.

The claim of Corollary 3.8 is then that this is the lattice of flats of a matroid on $E = \{\alpha, \beta, \gamma, \delta\}$ with rank function given by r(A) = |A| if $|A| \leq 2$, $r(\{\alpha, \beta, \gamma\}) = 2$, and r(A) = 3 for all A with $A \neq \{\alpha, \beta, \gamma\}$ and $|A| \geq 3$.

3.2. Geometric lattices from matroids. We aim at a "converse" of Proposition 3.7, constructing a geometric lattice for every given matroid.

Let E be a finite set and $rk: 2^E \to \mathbb{N}$ a matroid rank function. Recall from Lecture 2 the notion of *flats* and of *closure operator* associated to a matroid.

Definition 3.10. Let \mathcal{L}_{rk} be the poset of all closed sets ordered by inclusion (i.e., for $F, F' \in \mathcal{L}_{rk}$ we have $F \leq F'$ if $F \subseteq F'$).

Example 3.11.

Example 3.12. Consider the rank function $\operatorname{rk} : 2^{[4]} \to \mathbb{N}$ defined by $\operatorname{rk}(X) = 1$ if $|X| \leq 1$ and $\operatorname{rk}(X) = 2$ otherwise. This is the rank function of the uniform matroid $U_{2,4}$. The associated poset of flats is depicted below.

Our next goal is to prove that, in general, \mathcal{L}_{rk} is a geometric lattice.

Lemma 3.13. Let rk be a matroid rank function. Then, meet and join of every $F_1, F_2 \in \mathcal{L}_{rk}$ exist. In fact,

(1) $F_1 \vee F_2 = cl(F_1 \cup F_2)$

(2) $F_1 \wedge F_2 = F_1 \cap F_2$ In particular, \mathcal{L}_{rk} is a lattice.

Proof.

- (1) By definition of the ordering, every element of $(\mathcal{L}_{\mathrm{rk}})_{\geq F_1} \cap (\mathcal{L}_{\mathrm{rk}})_{\geq F_2}$ must contain $F_1 \cup F_2$. But, e.g. by Corollary 1.9 in Lecture 2, $\mathrm{cl}(F_1 \cup F_2)$ is the (unique) smallest closed set containing $F_1 \cup F_2$.
- (2) It is enough to prove that $F_1 \cap F_2$ is closed, which was done in Lemma 1.8 of Lecture 1.

Recall (e.g., from Corollary 1.9 in Lecture 2) that the closure operator cl is monotone $(X \subseteq Y)$ implies $cl(X) \subseteq cl(Y)$ and increasing $(X \subseteq cl(X))$.

Remark 3.14. If X < Y in \mathcal{L}_{rk} , then rk(X) < rk(Y). Otherwise, by (R2) we would have rk(X) = rk(Y) and so, since $Y \subseteq X$ by assumption, X = Y – a contradiction.

Proposition 3.15. For any $F_1, F_2 \in \mathcal{L}_{rk}$, (G) holds. I.e.,

$$F_1 \lessdot F_2 \Leftrightarrow \exists P \in A(\mathcal{L}_{\mathrm{rk}}), P \not\leq F_1, \ s.t. \ F_2 = F_1 \lor P.$$

Proof.

⇐ Let P be as in the claim. Since P is an atom, $P = cl(\{e\})$ for some element $e \in E$ and, since $P \leq F_1$, it must be $e \in E \setminus F_1$ Now we can write F_2 as

$$F_2 = F_1 \lor P = \operatorname{cl}(F_1 \cup P) = \operatorname{cl}(F_1 \cup \{e\})$$

(we have used Lemma 3.13 in the middle equality) and we have

$$\operatorname{rk}(F_1) + \operatorname{rk}(\{e\}) \ge \operatorname{rk}(\emptyset) + \operatorname{rk}(F_1 \cup \{e\}).$$

Now, $\operatorname{rk}(\{e\}) = \operatorname{rk}(\operatorname{cl}(e))$ and since $P = \operatorname{cl}(\{e\})$ has rank 1, $\operatorname{rk}(\{e\}) = 1$. Thus

$$\operatorname{rk}(F_2) = \operatorname{rk}(F \cup \{e\}) \le \operatorname{rk}(F_1) + 1.$$

Moreover, since F_1 is closed and $e \notin F_1$ we have $\operatorname{rk}(F_1 \cup \{e\}) > \operatorname{rk}(F_1)$, and we conclude that $\operatorname{rk}(F_2) = \operatorname{rk}(F_1) + 1$.

Now by Remark 3.14 any $Z \in \mathcal{L}_{rk}$, $F_1 < Z < F_2$, would force $rk(F_2) \ge rk(F_1) + 2$, hence a contradiction. We conclude $F_1 \le F_2$.

⇒ $F_1 < F_2$ implies $F_1 \subsetneq F_2$ and so we can choose $e \in F_2 \setminus F_1$. Then $\operatorname{rk}(\{e\}) = 1$ since otherwise e is in the closure of every flat, in particular we would have $e \in F_1$. It follows that $P := \operatorname{cl}(\{e\})$ is an atom of $\mathcal{L}_{\operatorname{rk}}$, and $P \leq F_2$ by monotonicity of the closure operator. Now define

 $F := F_1 \lor P = \operatorname{cl}(F_1 \cup \{e\}).$

Then the following claim concludes the proof.

Claim. $F_2 = F$.

Proof. We have

$$\operatorname{rk}(F) \ge \operatorname{rk}(F_1) + 1 = \operatorname{rk}(F_2).$$
(4)

The inequality holds since $F \supseteq F_1 \cup \{e\}$, F_1 is closed and $e \notin F_1$, the equality is immediate since $F_1 \ll F_2$.

Now since $F_1 \cup \{e\} \subseteq F_2$, monotonicity of cl implies $F \subseteq F_2$. Together with Equation (4) this shows $F = F_2$.

Theorem 3.16. Let rk be any matroid rank function. Then the poset $\mathcal{L}_{\operatorname{rk}}$ is a geometric lattice whose rank function ρ satisfies $\rho(F) = \operatorname{rk}(F)$ for every $F \in \mathcal{L}_{\operatorname{rk}}$.

Proof. That \mathcal{L}_{rk} is a geometric lattice follows from Lemma 3.13 and Proposition 3.15. For the claim about rank consider any $F \in \mathcal{L}_{rk}$ and let $\hat{0} \leq F_1 \leq \ldots \leq F_k = F$ be a maximal chain below F. Then, $\rho(F) = k$.

Choose atoms A_1, \ldots, A_k with $F_i = F_{i-1} \lor A_i$ for all *i*. Since every F_{i-1} is closed and $A_i \not\subseteq F_{i-1}$, we must have

$$\operatorname{rk}(F_{i-1}) > \operatorname{rk}(F_{i-1} \cup A_i) = \operatorname{rk}(F_i)$$
(5)

(the last equality by 3.13.(1)). On the other hand, (R2) implies

$$\operatorname{rk}(F_{i-1}) + \operatorname{rk}(A_i) \ge \operatorname{rk}(\underbrace{F_{i-1} \cap A_i}_{=\widehat{0}}) + \operatorname{rk}(F_{i-1} \cup A_i) = \operatorname{rk}(F_i)$$
(6)

and since $\operatorname{rk}(A_i) = 1$ because of Equations (5) and (6), we conclude $\operatorname{rk}(F_i) = \operatorname{rk}(F_{i-1}) + 1$, thus $r(X) = \operatorname{rk}(F_k) = k = \rho(X)$.

4. BACK TO BUSINESS: ARRANGEMENTS

4.1. The one and only rank function. At this stage we have two, a priori different, rank functions associated to an arrangement $\mathscr{A} = \{H_1, \ldots, H_m\}$ of hyperplanes:

• The rank function r_{lat} of the simple matroid associated to the geometric lattice $\mathcal{L}(\mathscr{A})$ as in Theorem 3.8:

$$r_{\text{lat}}: 2^{[m]} \to \mathbb{N}, \quad I \mapsto \rho\left(\bigvee_{i \in I} H_i\right)$$

• The rank function r_{dep} of the matroid of linear dependencies of the [n]-tuple of vectors $\{n_1, \ldots, n_m\}$, where n_i is any choice of normal vector for the hyperplane H_i :

$$r_{\text{dep}}: 2^{[m]} \to \mathbb{N}, \quad I \mapsto \dim \text{span}\{v_i \mid i \in I\}.$$

Our next goal is to show that they are the same.

Lemma 4.1. For every intersection $X \in \mathcal{L}(\mathscr{A})$ we have $\rho(X) = \operatorname{codim} X$

Proof. By definition $\rho(X) = k$ means that k is the length of a maximal chain $0 < X_1 < \cdots < X_k = X$. Now consider the subspaces X_i . By property (G), every X_i is of the form $X_{i-1} \cap H_i$ for some atom H_i of $\mathcal{L}(\mathscr{A})$ (i.e., hyperplane in \mathscr{A}) with $H_i \not\leq X_{i-1}$ (i.e., $H_i \not\supseteq X_{i-1}$). Notice that the latter implies that $X_{i-1} + H_i = \mathbb{R}^d$, the ambient space. Now, elementary linear algebra tells us that

$$\dim(\underbrace{X_{i-1}\cap H_i}_{=X_i}) + \underbrace{\dim(X_{i-1} + H_i)}_{=d} = \dim(X_{i-1}) + \underbrace{\dim(H_i)}_{d-1}$$

and thus $\dim(X_i) = \dim(X_{i-1}) - 1$. Therefore, X has dimension k less than $\widehat{0} = \mathbb{R}^d$, and the proof is complete.

Proposition 4.2.

 $r_{\rm lat} \equiv r_{\rm dep}.$

Proof. Let $I \subseteq [m]$ and write $X := \bigvee_{i \in I} H_i = \bigcap_{i \in I} H_i$ Then, with 4.1 we know that $r_{\text{lat}}(I) = \rho(X) = \text{codim}(X)$. On the other hand, $r_{\text{dep}}(I)$ equals the rank of the $d \times |I|$ matrix M whose columns are v_i for i in I. Now, X is the subspace of all points that are orthogonal to each v_i , $i \in I$, and therefore $X = \ker M$. Now, again by elementary linear algebra we know that dim ker $M = d - \operatorname{rank} M$. We summarize and conclude

$$r_{dep}(I) = \operatorname{rank} M = d - \dim \ker M = d - \dim X = \operatorname{codim}(X) = r_{lat}(I)$$

4.2. Arrangements' complements.

Definition 4.3. Let \mathscr{A} be an arrangement of hyperplanes in V. The *complement* of \mathscr{A} is the space

$$M(\mathscr{A}) := V \setminus \cup \mathscr{A}$$

The space $M(\mathscr{A})$ is a *fascinating* object, especially in the case where V is a complex vectorspace – more on this later.

Notation 4.4. Let \mathbb{K} denote a field and let $\mathscr{A} = \{H_1, \ldots, H_n\}$ denote an arrangement of hyperplanes in \mathbb{K}^d .

Suppose for simplicity that $\cap \mathscr{A} = \{0\}$.

We want to find a special "parametrization" of $M(\mathscr{A})$. For every i = 1, ..., n let a_i denote a (arbitrary) normal vector to H_i , and let $A := [a_1 \cdots a_n]$ be the $d \times n$ matrix whose columns are the vectors a_i .

Let b_1, \ldots, b_d denote the rows of A. Since $\cap \mathscr{A} = \{0\}$, we know that A has full rank and hence the b_i are linearly independent, so that the transpose

$$A^t : \mathbb{K}^d \to \mathbb{K}^n, \quad x \mapsto A^t x$$

is an injective linear map, whose image is the rowspace V of A (i.e., $V = \operatorname{im} A^{t}$).

Notice that $x \in H_i$ if and only if $\langle x | a_i \rangle = 0$, if and only if $(A^t x)_i = 0$. If we call $f : \mathbb{K}^d \to V$ the restriction to the map A^t to V, and letting $E_i := \{x_i = 0\}$ be the *i*-th coordinate hyperplane in \mathbb{K}^n , we have:

The function f is an invertible linear function between \mathbb{K}^d and V that maps $M(\mathscr{A})$ to $V \cap (\mathbb{K}^*)^n$.

In particular, the study of either of those spaces is equivalent. In order to characterise the latter space by polynomial equalities, notice that for every $y \in \mathbb{K}^n$ we have $y^t V = 0$ if and only if $y^t b_i = 0$ for all *i* or equivalently, since the b_i are the rows of $A, y \in \ker A$.

Now, $y \in \ker A$ if and only if the coordinates of y are the coefficients of a linear dependency among the a_i . We are led to consider the matroid $M(\{a_1, \ldots, a_n\})$ that we call henceforth just M.

Lemma 4.5. For every $C \in \mathcal{C}(M)$ there is $v(C) \in \ker A$ such that $v(C)_i = 0$ for all $i \notin C$. The vector v(C) is uniquely determined up to a nonzero scalar multiple.

Proof. The existence of v(C) follows from the very definition of a circuit of the matroid M(A). For the uniqueness part suppose that there is a v'(C) with the same support as v(C) and with $i, j \in C$ with $v(C)_i/v'(C)_i \neq v(C)_j/v'(C)_j$. Then the difference $v(C) - \frac{v_i(C)}{v'_i(C)}v'(C)$ is again in ker A, hence it defines a linear dependency among the a_i , but its support is nonempty (since it contains j) and strictly smaller than C (since it does not contain i), a contradiction to C being a circuit.

Lemma 4.6. The set $\{v(C) \mid C \in \mathcal{C}(M)\}$ spans ker A.

Proof. Let $v \in \ker A$. By definition, $D := \{i \in [n] \mid v_i \neq 0\}$ is a dependent set in M(A), hence it contains a circuit C. If C = D then by Lemma 4.5 v is a multiple of v(C) and we are done. Otherwise, choose $i \in C$ and let $\lambda \in \mathbb{K}$ be such that $\lambda v_i = v(C)_i$. Then, $v' = \lambda v - v(C)$ is an element of ker A with set of nonzero coordinates strictly contained in D (since $v'_i = 0$). Repeat then the argument with v' and, since D is finite, eventually we will terminate with a v''' whose support is a circuit.

We conclude that V is defined as the locus of common solutions of the set of equations

$$\left\{\sum_{i} v(C)_{i} x_{i} = 0, \quad \text{one for each } C \in \mathcal{C}(M)\right\}$$
(7)

In particular, if $\mathbb{K} = \mathbb{C}$, then $M(\mathscr{A})$ is equivalent to the subvariety of the complex torus $(\mathbb{C}^*)^n$ defined by the Equations (7). In this **very special** case, the tropicalization of $M(\mathscr{A})$ is the locus of all $w \in \mathbb{R}^n/\mathbf{1}\mathbb{R}$ such that

$$\min_{i \in C} \{w_1, \dots, w_n\} \text{ is attained twice.}, \qquad \text{for each } C \in \mathcal{C}(M).$$

Therefore:

The tropicalization of $M(\mathscr{A})$ is the Bergman fan $\widetilde{\mathscr{B}}(M(A))$, where A is any matrix whose columns are a set of normals for the hyperplanes in \mathscr{A} .

5. More on flats and abstract simplicial complexes

5.1. **Direct sums, again.** We have seen the notion of direct sum of matroids in terms of bases. Our goal is to prove the following

Theorem 5.1. Let M_1 , M_2 be matroids on disjoint ground sets. Then,

$$\mathcal{L}(M_1 \oplus M_2) = \mathcal{L}(M_1) \times \mathcal{L}(M_2).$$

First of all, let us explain the expression on the right-hand side.

Definition 5.2. Let (P, \leq_P) , (Q, \leq_Q) be partially ordered sets. Their *cartesian product* is the poset $P \times Q, \leq_{P \times Q}$, i.e., the cartesian product of the sets P and Q with a partial order defined by

 $(p_1, q_2) \leq_{P \times Q} (p_2, q_2)$ iff $p_1 \leq_P p_2, q_1 \leq_Q q_2$.

Example 5.3. The poset of all (nonnegative) divisors of 36 is the product of the posets of (nonnegative) divisors of 4 and of 9.

We continue our way towards Theorem 5.1 by exploring the notion of direct sum of matroids in terms of cryptomorphisms other than via bases.

Lemma 5.4. Let M_1 , M_2 be matroids on disjoint ground sets E_1, E_2 .

- (1) For $X \subseteq E_1 \cup E_2$, $\operatorname{rk}_{M_1 \oplus M_2}(X) = \operatorname{rk}_{M_1}(X \cap E_1) + \operatorname{rk}_{M_2}(X \cap E_2)$.
- (2) A set $F \subseteq E_1 \cup E_2$ is a flat of $M_1 \oplus M_2$ if and only if $F \cap E_i$ is a flat of M_i for i = 1, 2.

Proof.

- (1) The rank $\operatorname{rk}_{M_1 \oplus M_2}(X)$ is the size of a maximal independent subset $I \subseteq X$. Fom the definition of direct sum we have that I is independent in $M_1 \oplus M_2$ if and only if $I \cap E_i$ is independent in M_i , for i = 1, 2. Now, if $I \cap E_1$ is not M_1 -maximal independent in $X \cap E_1$, then it is contained in such a maximal independent I'_1 , and $I \cup I'_1 \subseteq X$ is independent in the direct sum and strictly larger than I, a contradiction. Therefore $I \cap E_i$ is maximal independent in $X \cap E_i$ with respect to M_i for both i, and so $\operatorname{rk}_{M_1 \oplus M_2}(X) = |I| = |I \cap E_1| + |I \cap E_2| = \operatorname{rk}_{M_1}(X \cap E_1) + \operatorname{rk}_{M_2}(X \cap E_2)$.
- (2) An $F \subseteq E_1 \cup E_2$ is a flat if and only if $\operatorname{rk}_{M_1 \oplus M_2}(F \cup \{e\}) > \operatorname{rk}_{M_1 \oplus M_2}(F)$ for all $e \in (E_1 \cup E_2) \setminus F$. But for every such e, say with $e \in E_1$, we have

$$\operatorname{rk}_{M_1 \oplus M_2}(F \cup \{e\}) = \operatorname{rk}_{M_1}((F \cap E_1) \cup \{e\}) + \operatorname{rk}_{M_2}(F \cap E_2)$$

and this is strictly greater than $\operatorname{rk}_{M_1 \oplus M_2}(F)$ if and only if $\operatorname{rk}_{M_1}(F \cap E_1 \cup \{e\}) > \operatorname{rk}_{M_1}(F \cap E_1)$. The same computation goes if $e \in E_2$, and the claim follows. 5.2. Abstract and geometric simplicial complexes. In the warmup to Lecture 3 we introduced the notion of a simplicial complex as a collection \mathcal{K} of simplices in Euclidean space such that (1) the collection contains all faces of each of its members (2) any two members of the collection intersect at a face of both.

Given a simplex S let V(S) denote the set of vertices of S, and let V be the set of all vertices of simplices in \mathcal{K} . Since the convex hull of every subset of the vertices of a simplex is a (different) face of the simplex itself, the collection

$$\Sigma(\mathscr{K}) = \{ V(S) \mid S \in \mathscr{K} \}$$

satisfies:

(ASC) $\sigma \in \Sigma$ and $\tau \subseteq \sigma$ implies $\tau \in \Sigma$.

Definition 5.5. Every collection Σ of subsets of a given finite set that satisfies (ASC) is called an *abstract simplicial complex*.

Proposition 5.6 (Without proof). For every abstract simplicial complex Σ on a finite set V there is a (geometric) simplicial complex \mathscr{K}_{Σ} in \mathbb{R}^n (for n big enough) such that, after identifying elements of V with the corresponding points in \mathbb{R}^n , we have $\Sigma = \Sigma(\mathscr{K}_{\Sigma})$.

We write

$$\|\Sigma\| := \bigcup_{S \in \mathscr{K}_{\Sigma}} S$$

for what we call the "geometric realization" of the abstract simplicial complex Σ . This is justified by the fact (also without proof) that any choice of \mathscr{K}_{Σ} yields a homeomorphic space $\|\Sigma\|$.

Now, if P is a finite poset then we write $\Delta(P) := \{\{p_1, \ldots, p_n\} \subseteq P \mid p_1 < p_2 < \ldots < p_n\}$ for the family of all totally ordered subsets of P. Clearly this is an abstract simplicial complex, called the *order complex* of P. We write for short

$$\|P\| := \|\Delta(P)\|$$

for the geometric realization of the order complex.

In particular, we can say that the tropicalization of $M(\mathscr{A})$ is combinatorially isomorphic to the cone over (a realization of) the simplicial complex $\Delta(\mathcal{L}(\mathscr{A}) \setminus \{\hat{0}, \hat{1}\})$ – the latter we know to be isomorphic to the Bergman complex $\mathscr{B}(M)$.

Another proposition that we list without proof is the following.

Proposition 5.7. Let P and Q be finite posets. Then $\|\Delta(P \times Q)\|$ is homeomorphic to $\|\Delta(P)\| \times \|\Delta(Q)\|$

Notice that the cartesian product of simplicial complexes appearing in the proposition is properly a polyhedral complex (since products of simplices are not simplices, but just polytopes).

Corollary 5.8. Let M be a matroid. Then the Bergman complex is the product of the Bergman complexes of the connected components of M.

6. References and complementary literature

Section 1 is again based on [3]. The exposition in Section 3 follows only partially [4] and [1]. Proofs of the statements that appear without justification in the last part of Section 5 can be found in [2, Sections B.3, C.2, C.3].

NOTES FOR LECTURE 4

References

- [1] Martin Aigner; Combinatorial theory. Classics in Mathematics. Springer-Verlag, Berlin, 1997. viii+483 pp.
- [2] Mark De Longueville; A course in topological combinatorics. Universitext. Springer, New York, 2013. xii+238 pp.
- [3] Eva Maria Feichtner, Bernd Sturmfels; Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62 (2005), no. 4, 437-468.
- [4] James Oxley; *Matroid theory*. Second edition. Oxford Graduate Texts in Mathematics, 21. Oxford University Press, Oxford, 2011. xiv+684 pp.