## NOTES FOR LECTURE 3

Note: A detailed list of sources and references can be found at the end of the document.
RECALL (E.G., FROM WARM-UP):
Given any polytope $P$ in $\mathbb{R}^{n}$ and any vector $w \in \mathbb{R}^{n}$, the set

$$
[P \uparrow w]:=\underset{x \in P}{\arg \max }\langle w \mid x\rangle
$$

of points of $P$ where the linear form $x \mapsto\langle w \mid x\rangle$ attains its maximum is a face of $P$, and every face of $P$ has this form.
The collection $\mathscr{N}(P):=\left\{N_{Q}\right\}$ where $Q$ ranges over all faces of $P$ and

$$
\begin{equation*}
N_{Q}:=\left\{w \in \mathbb{R}^{n} \mid Q \subseteq[P \uparrow w]\right\} \tag{1}
\end{equation*}
$$

is a fan, called the normal fan of $P$.

## 1. The Bergman fan

In the proof of Proposition 2.13 from Lecture Notes 2 we associate to every flacet $F$ the matroid $M_{F}$ corresponding to the facet of $P_{M}$ determined by the valid inequality $\sum_{i \in F} x_{i} \leq \operatorname{rk}(F)$. Explicitly, this face is $\left[P_{M} \uparrow e_{F}\right]$, the set of points of $P_{M}$ where the linear form $\left\langle e_{F} \mid x\right\rangle=\sum_{i \in F} x_{i}$ takes its maximum value (this maximal value is $\operatorname{rk}(F)$ ).

We want to generalize this construction.
Definition 1.1. Let $M$ be a matroid on $[n]$ and let $w \in \mathbb{R}^{n}$. Call $M_{w}$ the matroid with

$$
P_{M_{w}}=\left[P_{M} \uparrow w\right] .
$$

This is well-defined because from Lecture 2 we know that every face of a matroid polytope is again a matroid polytope, and that the matroid polytope completely determines the matroid.
Digression-Remark 1.2. Let $F$ be a flacet of a connected matroid $M$. Then $M_{e_{F}}=M_{F}$, as defined in Proposition 2.13 of Lecture 2, where the matroids that appear are, in particular, loopless. We aim at generalizing this description to every face of $P_{M}$ that intersects the relative interior of the simplex $r \cdot \Delta^{(n)}$.

Lemma 1.3. Let $M$ be a matroid of rank $r$ on $[n]$ and let $w \in \mathbb{R}^{n}$. The following are equivalent.
(1) $M_{w}$ has no loops.
(2) Every element of the ground set $[n]$ appears in some basis of $M_{w}$.
(3) The face $\left[P_{M} \uparrow w\right]$ intersects the (relative) interior of $r \cdot \Delta^{(n)}$.

Proof. For the equivalence of (1) and (2) notice that by definition bases are the inclusion-maximal independent sets: thus, for an element $e$ to be contained in some basis is equivalent to the set $\{e\}$ to have rank 1. Since $e$ is a loop if and only if $\{e\}$ has rank 0 , we conclude that $e$ is contained in some basis if and only if $e$ is not a loop. The equivalence of (1) and (2) follows.

Now for the equivalence of (2) and (3). The relative interior of $r \cdot \Delta^{(n)}$ consists of the points $x \in T$ with $x_{i}>0$ for all $i \in[n]$. On the other hand, every point $p \in\left[P_{M} \uparrow w\right]$ is in the convex hull of the vertices of $\left[P_{M} \uparrow w\right]$, i.e., of all vectors $e_{B}$ where $B$ runs over all bases of $M_{w}$ - this
means $p=\sum_{B \in \mathcal{B} M_{w}} \lambda_{B} e_{B}$ for some $\lambda_{B} \geq 0$ with $\sum \lambda_{B}=1$. On the one hand, this shows that for every nonzero coordinate $i$ of $P$ there must be a basis of $M_{w}$ with $i \in B$. Thus, if there is $p \in\left[P_{M} \uparrow w\right] \cap$ relint $r \cdot \Delta^{(n)}$ then all coordinates of $p$ are nonzero and so every element of $[n]$ appears in some basis of $M_{w}$. Conversely, if $\bigcup_{B \in \mathcal{B}\left(M_{w}\right)}=[n]$ then $p:=\sum_{B \in \mathcal{B}\left(M_{w}\right)} \frac{1}{\left|\mathcal{B}\left(M_{w}\right)\right|} e_{B}$ is a point of $\left[P_{M} \uparrow w\right]$ that lies in the relative interior of $r \cdot \Delta^{(n)}$.
Definition 1.4. Let $M$ be a matroid on $[n]$ and let $w \in \mathbb{R}^{n}$. The set

$$
\widetilde{\mathscr{B}}(M):=\left\{w \in \mathbb{R}^{n} \mid M_{w} \text { has no loops }\right\}
$$

is called the Bergman fan of $M$ (see the following Proposition for a justification of this name).
Proposition 1.5. We have

$$
\widetilde{\mathscr{B}}(M)=\bigcup_{\substack{F \text { face of } P_{M} \\ F \cap \operatorname{relint}\left(r \cdot \Delta \Delta^{(n)}\right) \neq \emptyset}} N_{F}
$$

and the set of cones on the right-hand side is a subfan of the normal fan to $P_{M}$.
Proof. We start with proving the following claim.
Claim. If $w \in \widetilde{\mathscr{B}}(M)$, then $N_{\left[P_{M} \uparrow w\right]} \subseteq \widetilde{\mathscr{B}}(M)$.
Proof. It is enough to prove that if $M_{w}$ is loop-less, then so is $M_{w^{\prime}}$ for every $w^{\prime} \in N_{\left[P_{M} \uparrow w\right]}$. Now, by Equation (1), $w^{\prime} \in N_{\left[P_{M} \uparrow w\right]}$ implies $\left[P_{M} \uparrow w^{\prime}\right] \supseteq\left[P_{M} \uparrow w\right]$ and thus

$$
\left[P_{M} \uparrow w^{\prime}\right] \cap \operatorname{relint}\left(r \cdot \Delta^{(n)}\right) \supseteq\left[P_{M} \uparrow w\right] \cap \operatorname{relint}\left(r \cdot \Delta^{(n)}\right) \neq \emptyset
$$

The last inequality holds by Lemma 1.3 , and the same Lemma applied to $w^{\prime}$ now proves the claim.
The claim implies immediately the set-theoretic equality ( $\dagger$ ). For the second assertion we have to prove that the set of cones on the right-hand side of $(\dagger)$ contains all faces of each of its elements. But faces of $N_{F}$ are of the form $N_{Q}$ for faces $Q \supseteq F$, and if $F$ meets the relative interior of $r \cdot \Delta^{(n)}$, so does every $Q \supseteq F$.

## 2. An Explicit Description....

2.1. ... of $M_{w}$.

Definition 2.1. For any given $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ let us partition the set $[n]$ into blocks, so that elements of the same block index coordinates of $w$ with the same value.

Precisely, consider the equivalence relation $\sim_{w}$ on $[n]$ with $i \sim_{w} j$ if and only if $w_{i}=w_{j}$. Let $\pi_{1}, \ldots, \pi_{s}$ be the equivalence classes of $\sim_{w}$, numbered in order of decreasing value - i.e., for $\pi_{k}=\left[w_{i}\right]$ and $\pi_{l}=\left[w_{j}\right]$, we have $k<l$ if and only if $w_{i}>w_{j}$.

Let us now define a chain of subsets of $[n]$ as follows:

$$
\Phi(w):=\left\{F_{i}^{w}\right\}_{i=0, \ldots, s}, \quad \text { with } \quad F_{0}^{w}:=\emptyset, F_{i}^{w}:=\pi_{1} \cup \ldots \cup \pi_{i} \text { for all } i>0
$$

Our next goal is to prove the following theorem.
Theorem 2.2. A vector $w \in \mathbb{R}^{n}$ is contained in $\widetilde{\mathscr{B}}(M)$ if and only if all $F_{i}^{w}$ are flats of $M$.
We start with an explicit expression of $M_{w}$ in terms of the family $\Phi(w)$.
Proposition 2.3. Let $M$ be a matroid on $[n]$ and $w \in \mathbb{R}^{n}$. Then

$$
M_{w}=\bigoplus_{i=1}^{s} M\left[F_{i}^{w}\right] / F_{i-1}^{w}
$$

where $\left\{F_{i}^{w}\right\}_{i=1, \ldots, s}$ is as above.
Proof. We start with an auxiliary claim that will unlock a recursive proof.

Claim. $M_{w}=M\left[F_{s-1}^{w}\right]_{w} \oplus M / F_{s-1}^{w}$.
Proof. Let $W_{s-1}$ denote the value of $\langle x \mid w\rangle$ on any basis of $M\left[F_{s-1}^{w}\right]_{w}$, and let $d$ be the difference between the rank of $M$ and that of $M\left[F_{s-1}^{w}\right]$.

For every basis $B$ of $M$ we can complete $B \cap F_{s-1}^{w}$ to a basis $\left(B \cap F_{s-1}^{w} \uplus A\right)$ of $M\left[F_{s-1}^{w}\right]$ and we have

$$
\begin{aligned}
\left\langle w \mid e_{B}\right\rangle=\left\langle w \mid e_{\left(B \cap F_{s-1}\right)}\right\rangle+(|A|+d) w_{s} & \leq\left\langle w \mid e_{\left(B^{\prime} \cap F_{s-1}\right)}\right\rangle+|A| w_{s-1}+d w_{s} \\
& \leq\left\langle w \mid e_{\left(B \cap F_{s-1}\right) \cup A}\right\rangle+d w_{s} \leq W_{s-1}+d w_{s}
\end{aligned}
$$

(where in the first equality we used that $|A|+d=\left|B \backslash F_{s-1}\right|$ ). In this series of inequalities, equality holds throughout if and only if $|A|=0$ and $\left\langle w \mid e_{\left(B \cap F_{s-1}\right) \cup A}\right\rangle=W_{s-1}$, i.e., if and only if $B \cap F_{s-1}$ is a basis of $M\left[F_{s-1}^{w}\right]_{w}$.

Now, if $B$ is any basis or the r-h.s. of the claim, then $B$ is a basis of $M\left[F_{s-1}^{w}\right] \oplus M / F_{s-1}^{w}$ and, by definition of contraction, is a basis of $M$. Moreover, in this case equality is attained because $B \cap F_{s-1}^{w}$ is a basis of $M\left[F_{s-1}^{w}\right]$ by definition of $B$. Hence, $B$ is a basis of $M_{w}$. In general, the bases of $M_{w}$ are exactly those bases $B$ of $M$ for which $\left\langle w \mid e_{B}\right\rangle=W_{s-1}+d w_{s}$. These are precisely those with $B \cap F_{s-1} \in \mathcal{B}\left(M\left[F_{s-1}^{w}\right]_{w}\right)$, i.e., those that are bases of $M\left[F_{s-1}^{w}\right]_{w} \oplus M / F_{s-1}^{w}$.
We can apply the claim repeatedly, obtaining

$$
M_{w}=M\left[F_{s-1}^{w}\right]_{w} \oplus M / F_{s-1}^{w}=\left(M\left[F_{s-2}^{w}\right]_{w} \oplus M\left[F_{s-1}^{w}\right] / F_{s-2}^{w}\right) \oplus M / F_{s-1}^{w}=\ldots
$$

reaching the decomposition

$$
M_{w}=M\left[F_{1}^{w}\right] \oplus \cdots \oplus M\left[F_{s-2}^{w}\right] / F_{s-3}^{w} \oplus M\left[F_{s-1}^{w}\right]_{w} / F_{s-2}^{w} \oplus M / F_{s-1}^{w}
$$

Since $M\left[F_{1}^{w}\right] / F_{0}^{w}=M\left[F_{1}^{w}\right] / \emptyset=M\left[F_{1}^{w}\right]$ and $M\left[F_{s}^{w}\right] / F_{s-1}^{w}=M[[n]] / F_{s-1}^{w}=M / F_{s-1}^{w}$, the claim follows.

Proof of Theorem 2.2. Let $M$ be a matroid on $[n]$ and $w \in \mathbb{R}^{n}$. By Proposition 2.3, it is enough to prove that $\bigoplus_{i=1}^{s} M\left[F_{i}^{w}\right] / F_{i-1}^{w}$ is loop-less if and only if all $F_{i}^{w}$ are flats. To this end, notice that for every loop $e$ in the direct sum there is an index $i$ such that $e$ is a loop in the summand $M\left[F_{i}^{w}\right] / F_{i-1}^{w}$, and the loops of $M\left[F_{i}^{w}\right] / F_{i-1}^{w}$ are exactly the elements of $\operatorname{cl}\left(F_{i-1}^{w}\right) \backslash F_{i-1}^{w}$. By definition, the latter set is empty if and only if $F_{i-1}^{w}$ is a flat.
2.2. ... of $\widetilde{\mathscr{B}}(M)$. We are led to consider chains of flats.

Definition 2.4. Given a matroid $M$, let $\mathcal{L}(M)$ denote the set of all flats of $M$. Moreover, let $\overline{\mathcal{L}}(M):=\mathcal{L}(M) \backslash\{\operatorname{cl}(\emptyset),[n]\}$ denote the set of all flats with the smallest and the biggest removed.

By a chain in either $\mathcal{L}(M)$ or $\overline{\mathcal{L}}(M)$ we mean a set $\Phi=\left\{F_{1} \subseteq F_{2}, \ldots\right\}$ of increasing elements of $\mathcal{L}(M)$ or $\overline{\mathcal{L}}(M)$, respectively. The set of all chains in $\mathcal{L}(M)$, resp. $\overline{\mathcal{L}}(M)$ is commonly denoted by $\Delta(\mathcal{L}(M))$, resp. $\Delta(\overline{\mathcal{L}}(M))$.

The next definition associates two polyhedra to a family of subsets of a ground set.
Definition 2.5. For a given family $\Phi \subseteq 2^{[n]}$ of subsets of $[n]$ let

$$
\Gamma^{\Phi}:=\operatorname{cone}\left\{e_{F} \mid F \in \Phi\right\}
$$

and for every matroid $M$ let

$$
\Gamma(M):=\left\{\Gamma^{\Phi}\right\}_{\Phi \in \Delta(\overline{\mathcal{L}}(M))} .
$$

Moreover, write $1:=e_{[n]} \in \mathbb{R}^{n}$ for the all-one vector.
Lemma 2.6. If $\Phi$ is an increasing family of subsets of $[n]$ and $w \in \Gamma^{\Phi}$, then $\Phi(w) \subseteq \Phi$.
Proof. By definition, $w \in \Gamma^{\Phi}$ implies that $w=\sum_{F \in \Phi} \lambda_{F} e_{F}$ with $\lambda_{F} \geq 0$ for all $F$. Then, $\Phi(w)=$ $\left\{F \in \Phi \mid \lambda_{F}>0\right\}$.

Lemma 2.7. Let $M$ be a matroid and $\Phi \in \Delta(\overline{\mathcal{L}}(M))$. Then $\Gamma^{\Phi}$ is a simplicial cone, whose faces are all $\Gamma^{\Psi}$ with $\Psi \subseteq \Phi$ (we set $\Gamma^{\emptyset}=\{0\}$ ). Moreover, given $\Phi, \Phi^{\prime} \in \Delta(\overline{\mathcal{L}}(M))$ we have $\Gamma^{\Phi} \cap \Gamma^{\Phi^{\prime}}=\Gamma^{\Phi \cap \Phi^{\prime}}$. In particular, $\Gamma(M)$ is a (simplicial) fan.

Proof. The set $\left\{e_{F} \mid F \in \Phi\right\}$ is linearly independent (because of the strict containment relation among the $F_{i}$ ), thus $\Gamma^{\Phi}$ is simplicial, and in particular its faces are the cones generated by all subsets of $\left\{e_{F} \mid F \in \Phi\right\}$, i.e., the cones of the form $\Gamma^{\Psi}$ with $\Psi \subseteq \Phi$.

For the statement about intersections, let $\Phi_{1}, \Phi_{2} \in \Delta(\overline{\mathcal{L}}(M))$. Now, by Lemma 2.6 any $w \in$ $\Gamma^{\Phi_{1}} \cap \Gamma^{\Phi_{2}}$ must have $\Phi(w) \subseteq \Phi_{1} \cap \Phi_{2}$, from which $w \in \Gamma^{\Phi_{1} \cap \Phi_{2}}$. The inclusion $\Gamma^{\Phi_{1} \cap \Phi_{2}} \subseteq \Gamma^{\Phi_{1}} \cap \Gamma^{\Phi_{2}}$ is evident, and the claim follows.

With this, we can draw some more consequences from Theorem 2.2.
Proposition 2.8. Let $M$ be a matroid on the ground set $[n]$. Then

$$
\widetilde{\mathscr{B}}(M)=\bigcup_{\Phi \in \Delta(\overline{\mathcal{L}}(M))} \Gamma^{\Phi}+\mathbb{R} \mathbf{1}
$$

and the right-hand side defines a polyhedral fan that is combinatorially isomorphic to $\Gamma(M)$.
Proof. Observe that, for all $w \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\Phi(w)=\Phi(w+t \mathbf{1}) \text { for all } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

Now, elements of the right-hand side of $(\ddagger)$ are 1-translates of elements of (some face of ) some $\Gamma^{\Phi}$ for $\Phi \in \Delta(\overline{\mathcal{L}}(M))$; i.e., $w \in \mathbb{R}^{n}$ is in the r.-h.s. if and only if there is $t \in \mathbb{R}$ and $\Psi \in \Delta(\overline{\mathcal{L}}(M))$ such that $\Phi(w+t \mathbf{1})=\Psi$. By (2), this is equivalent to requiring $\Phi(w) \subseteq \Delta(\overline{\mathcal{L}}(M)$ ), i.e., (by Theorem 2.2) $w \in \widetilde{\mathscr{B}}(M)$. This proves the set-theoretic equality.

In order to prove that the collection $\mathscr{G}_{M}$ of all cones appearing in the r.-h.s of $(\ddagger)$. is a fan, notice first that

$$
\Gamma^{\Phi}+\mathbf{1} \mathbb{R}=\operatorname{cone}\left(\left\{e_{F} \mid F \in \Phi\right\} \cup\{\mathbf{1},-\mathbf{1}\}\right)
$$

In particular, every member of $\mathscr{G}_{M}$ is a cone, whose faces are of the form cone( $A$ ) for some $A \subseteq$ $\left\{e_{F} \mid F \in \Phi\right\} \cup\{\mathbf{1}, \mathbf{- 1}\}$. Now, if cone $(A)$ is a face, say with defining inequality $\langle a \mid x\rangle \leq b$, then $\langle a \mid x+\mathbb{R} \mathbf{1}\rangle \leq b$, hence $a \perp \mathbf{1}$ and in particular $A \supset\{ \pm \mathbf{1}\}$. Therefore, every face of the cone $\Gamma^{\Phi}+\mathbf{1} \mathbb{R}$ must be of the form $\Gamma^{\Psi}+\mathbf{1} \mathbb{R}$ for some $\Psi \subseteq \Phi$, thus $\mathscr{G}_{M}$ contains every face of each of its members. Conversely, given any $\Psi=\left\{F_{i_{1}}^{w}, F_{i_{2}}^{w}, \ldots\right\} \subsetneq \Phi$,
consider the vector

$$
\begin{equation*}
a_{\Psi}:=(\underbrace{\underbrace{\frac{1}{1-\left|F_{i_{1}}^{w}\right|}, \frac{1}{1-\left|F_{i_{1}}^{w}\right|}, \ldots, \frac{1}{1-\left|F_{i_{1}}^{w}\right|}, 1}_{F_{i_{1}}^{w}-\text { coordinates }}, \frac{1}{1-\left|F_{i_{2}}^{w} \backslash F_{i_{1}}^{w}\right|}, \frac{1}{1-\left|F_{i_{2}}^{w} \backslash F_{i_{1}}^{w}\right|}, \ldots, \frac{1}{1-\left|F_{i_{2}}^{w} \backslash F_{i_{1}}^{w}\right|}, 1, \ldots)}_{F_{i_{2}}^{w} \text { - coordinates }}, \tag{3}
\end{equation*}
$$

where we ordered entries so that the last coordinate of $F_{i_{j}}^{w}$ is not contained in $F_{i_{j}-1}^{w}$ (hence also not contained in any $F_{i}^{w}$ with $i_{j-1}<i<i_{j}$ ). One checks that $\left\langle a_{\Psi} \mid e_{F}\right\rangle=0$ for $F \in \Psi \cup\{ \pm \mathbf{1}\}$ and $\left\langle a_{\Psi} \mid e_{F}\right\rangle<0$ for $F \in \Phi \backslash \Psi$. Thus, every $\Gamma^{\Psi}+\mathbb{R} \mathbf{1}$ is a face of $\Gamma^{\Psi}+\mathbb{R} \mathbf{1}$. In particular, given $\Phi_{1}, \Phi_{2} \in \Delta(\overline{\mathcal{L}}(M))$ the set

$$
\left(\Gamma^{\Phi_{1}}+\mathbf{1} \mathbb{R}\right) \cap\left(\Gamma^{\Phi_{2}}+\mathbf{1} \mathbb{R}\right)=\left(\Gamma^{\Phi_{1}} \cap \Gamma^{\Phi_{2}}\right)+\mathbf{1} \mathbb{R}=\Gamma^{\Phi_{1} \cap \Phi_{2}}+\mathbf{1} \mathbb{R}
$$

is a face of both cones $\Gamma^{\Phi_{i}}+\mathbf{1} \mathbb{R}, i=1,2$ (the displayed equalitites follow by Lemma 2.7). This proves that the intersection of any two members of $\mathscr{G}_{M}$ is a face of both, thus $\mathscr{G}_{M}$ is a fan. Moreover, the same observation shows that the correspondence $\Gamma^{\Phi} \mapsto \Gamma^{\Phi}+\mathbf{1} \mathbb{R}$ defines the desired combinatorial isomorphism.

Remark 2.9. Notice that the fan structures in $(\dagger)$ and $(\ddagger)$ are different: the latter has, in general, more cones. One usually refers to $(\ddagger)$ as the fine subdivision, and to ( $\dagger$ ) as the coarse subdivision of the Bergman fan. If $M$ is connected, the rays of the fine subdivision that are also rays of the coarse subdivision are exactly the $\Gamma^{\{F\}}$ where $F$ is a flacet.
Remark-Definition 2.10. From Proposition 2.8 we have that translation by 1 preserves $\widetilde{\mathscr{B}}(M)$ and its fan structure. Thus there is no loss of information in considering, as one often does in tropical geometry, the Bergman fan as a subset of the quotient $\mathbb{R}^{n} / \mathbb{R} \mathbf{1}$. In order to study this situation let $\pi_{T}$ denote the orthogonal projection onto the hyperplane $T=\mathbf{1}^{\perp}$ (with equation $\sum_{i \in[n]} x_{i}=0$ ), and let

$$
\overline{\mathscr{B}}(M):=\pi_{T}(\widetilde{\mathscr{B}}(M))
$$

Lemma 2.11. We have

$$
\overline{\mathscr{B}}(M)=\bigcup_{\Phi \in \Delta(\overline{\mathcal{L}}(M))} \pi_{T}\left(\Gamma^{\Phi}\right)
$$

where the union on the right-hand side defines a (simplicial) fan structure that refines the coarse structure given by $\left\{\pi_{T}\left(N_{\left[P_{M} \uparrow w\right]}\right)\right\}_{w \in T}$ (see Equation ( $\dagger$ )).

Proof. The set-theoretic union follows from Proposition 2.8 by definition of $\overline{\mathscr{B}}(M)$. We have to prove that $\left\{\pi_{T}\left(\Gamma^{\Phi}\right)\right\}_{\Phi \in \Delta(\overline{\mathcal{L}}(M))}$ is a fan.

To this end, notice that since $\{\mathbf{1}\} \cup\left\{e_{F} \mid F \in \Phi\right\}$ is a linearly independent set, the set $\left\{\pi_{T}\left(e_{F}\right) \mid\right.$ $F \in \Phi\}$ is linearly independent in $T$. Therefore $\pi_{T}\left(\Gamma^{\Phi}\right)=\operatorname{cone}\left\{\pi_{T}\left(e_{F}\right) \mid F \in \Phi\right\}$, and this is a simplicial cone; in particular, its faces are the $\pi_{T}\left(\Gamma^{\Psi}\right)$ with $\Psi \subseteq \Phi$. We are left with considering intersections of cones. Let $\Phi_{1}, \Phi_{2} \in \Delta(\overline{\mathcal{L}}(M))$. Obviously $\pi_{T}\left(\Gamma^{\Phi_{1}}\right) \cap \pi_{T}\left(\Gamma^{\Phi_{2}}\right)$

To this end, recall the proof of Proposition 2.8 and in particular that the facets of the cone $\Gamma^{\Phi}+\mathbb{R} \mathbf{1}$ are exactly the hyperplanes orthogonal to the vectors $a_{\Phi \backslash\{F\}}$ defined in (3), where $F$ ranges in $\Phi$. Now, obviously $\pi_{T}\left(\Gamma^{\Phi}\right)=\pi_{T}\left(\Gamma^{\Phi}+\mathbb{R} \mathbf{1}\right)=\left(\Gamma^{\Phi}+\mathbb{R} \mathbf{1}\right) \cap T$, and since $a_{\Psi} \subseteq T$ for all $\Psi$, the set $\pi_{T}\left(\Gamma^{\Phi}\right)$ is defined, inside the vectorspace $T$, by the intersection of the halfspaces $\left\langle x \mid a_{\Phi \backslash\{F\}}\right\rangle \geq 0$, all bounded by hyperplanes $\left(a_{\Phi \backslash\{F\}}\right)^{\perp}$ containing the origin. Therefore $\pi_{T}\left(\Gamma^{\Phi}\right)$ is a simplicial cone whose faces are all $\pi_{T}\left(\Gamma^{\Psi}\right)$ for $\Psi \subseteq \Phi$. Moreover, for any $\Phi_{1}, \Phi_{2}$ with Lemma 2.7 we have

$$
\pi_{T}\left(\Gamma^{\Phi_{1}}\right) \cap \pi_{T}\left(\Gamma^{\Phi_{2}}\right)=\cap \pi_{T}\left(\Gamma^{\Phi_{1}} \cap \Gamma^{\Phi_{2}}\right)=\pi_{T}\left(\Gamma^{\Phi_{1} \cap \Phi_{2}}\right)
$$

proving that $\left\{\pi_{T}\left(\Gamma^{\Phi}\right)\right\}_{\Phi \in \Delta(\overline{\mathcal{L}}(M))}$ is a fan in $T$, combinatorially isomorphic to $\Gamma(M)$.
Remark-Definition 2.12. The fan $\overline{\mathscr{B}}(M)$ is the cone over a cell complex denoted by $\mathscr{B}(M)$ and called the Bergman complex of $M$ (one way to see this is to think about $\mathscr{B}(M)$ as the intersection of $\widetilde{\mathscr{B}}(M)$ with the unit sphere in $T$ ). In order to express this complex, for a given family $\Phi \subseteq 2^{[n]}$ of subsets of $[n]$ let

$$
\gamma^{\Phi}:=\operatorname{conv}\left\{e_{F} \mid F \in \Phi\right\}, \quad \gamma(M):=\bigcup_{\Phi \in \Delta(\overline{\mathcal{L}}(M))} \gamma^{\Phi}
$$

Proposition 2.13. Let $M$ be a matroid.
(1) The collection $\left\{\gamma^{\Phi}\right\}_{\Phi \in \Delta(\overline{\mathcal{L}}(M))}$ defines a structure of simplicial complex on the space $\gamma(M)$.
(2) The projection $\pi_{T}$ induces a (linear) isomorphism of simplicial complexes between $\gamma(M)$ and $\pi_{T}(\gamma(M))=\bigcup_{\Phi \in \Delta(\overline{\mathcal{L}}(M))} \pi_{T}\left(\gamma^{\Phi}\right)$.
(3)

$$
\overline{\mathscr{B}}(M)=\operatorname{cone} \pi_{T}(\gamma(M))
$$

Proof. Exercise.

Remark 2.14. The content of this proposition can be summarized as saying that the simplicial complex $\gamma(M)$ is isomorphic to a subdivision of the Bergman complex $\mathscr{B}(M)$. In fact, sometimes the name "Bergman complex" is used to refer to $\gamma(M)$.

Visualisation Method 2.15. In order to think about the Bergman fan $\widetilde{\mathscr{B}}(M)$ one usually ignores the lineality space $\mathbb{R} \mathbf{1}$ - essentially thinking about something like $\overline{\mathscr{B}}(M)$. In order to draw this simplicial complex, one exploits Proposition 2.13 and draws a representation of $\gamma(M)$, a simplicial complex whose vertices are the flats of $M$ (except the minimal and the maximal one) and whose simplices correspond to increasing chains of flats.

If $M$ is connected, we can recover the structure of $\widetilde{\mathscr{B}}(M)$ by noting that the vertices of the simplicial complex that correspond to rays of $\widetilde{\mathscr{B}}(M)$ are those $e_{F}$ such that $F$ is a flacet.

## 3. Sources and references

Section 1 follows [2], and the approach of Section 2 is inspired by [1]. An alternative treatment of a selection from the material of Lectures $2,3,4$ is in [3], where one finds also a brief treatment of normal fans of polytopes. For more on the latter subject, see [4]. The notations follow the commonalities of $[1,2,3]$.

## References

[1] Federico Ardila, Caroline Klivans; The Bergman complex of a matroid and phylogenetic trees. J. Combin. Theory Ser. B 96 (2006), no. 1, 38-49.
[2] Eva Maria Feichtner, Bernd Sturmfels; Matroid polytopes, nested sets and Bergman fans. Port. Math. (N.S.) 62 (2005), no. 4, 437-468.
[3] Diane Maclagan, Bernd Sturmfels; Introduction to tropical geometry. Graduate Studies in Mathematics, 161. American Mathematical Society, Providence, RI, 2015. xii+363 pp.
[4] Günter M. Ziegler; Lectures on polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag, New York, 1995. x+370 pp.

