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NOTES FOR LECTURE 3

Note: A detailed list of sources and references can be found at the end of the document.

Recall (e.g., from warm-up):
Given any polytope P in Rn and any vector w ∈ Rn, the set

[P ↑w] := arg max
x∈P

〈w | x〉

of points of P where the linear form x 7→ 〈w|x〉 attains its maximum is a face
of P , and every face of P has this form.
The collection N (P ) := {NQ} where Q ranges over all faces of P and

NQ := {w ∈ Rn | Q ⊆ [P ↑w]}, (1)

is a fan, called the normal fan of P .

1. The Bergman fan

In the proof of Proposition 2.13 from Lecture Notes 2 we associate to every flacet F the matroid
MF corresponding to the facet of PM determined by the valid inequality

∑
i∈F xi ≤ rk(F ). Explic-

itly, this face is [PM ↑eF ], the set of points of PM where the linear form 〈eF |x〉 =
∑

i∈F xi takes its
maximum value (this maximal value is rk(F )).

We want to generalize this construction.

Definition 1.1. Let M be a matroid on [n] and let w ∈ Rn. Call Mw the matroid with

PMw = [PM ↑w].

This is well-defined because from Lecture 2 we know that every face of a matroid polytope is again
a matroid polytope, and that the matroid polytope completely determines the matroid.

Digression-Remark 1.2. Let F be a flacet of a connected matroid M . Then MeF = MF , as
defined in Proposition 2.13 of Lecture 2, where the matroids that appear are, in particular, loopless.
We aim at generalizing this description to every face of PM that intersects the relative interior of
the simplex r ·∆(n).

Lemma 1.3. Let M be a matroid of rank r on [n] and let w ∈ Rn. The following are equivalent.

(1) Mw has no loops.

(2) Every element of the ground set [n] appears in some basis of Mw.

(3) The face [PM ↑w] intersects the (relative) interior of r ·∆(n).

Proof. For the equivalence of (1) and (2) notice that by definition bases are the inclusion-maximal
independent sets: thus, for an element e to be contained in some basis is equivalent to the set {e}
to have rank 1. Since e is a loop if and only if {e} has rank 0, we conclude that e is contained in
some basis if and only if e is not a loop. The equivalence of (1) and (2) follows.

Now for the equivalence of (2) and (3). The relative interior of r · ∆(n) consists of the points
x ∈ T with xi > 0 for all i ∈ [n]. On the other hand, every point p ∈ [PM ↑w] is in the convex
hull of the vertices of [PM ↑ w], i.e., of all vectors eB where B runs over all bases of Mw – this
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means p =
∑

B∈BMw
λBeB for some λB ≥ 0 with

∑
λB = 1. On the one hand, this shows that

for every nonzero coordinate i of P there must be a basis of Mw with i ∈ B. Thus, if there is
p ∈ [PM ↑ w] ∩ relint r · ∆(n) then all coordinates of p are nonzero and so every element of [n]
appears in some basis of Mw. Conversely, if

⋃
B∈B(Mw) = [n] then p :=

∑
B∈B(Mw)

1
|B(Mw)|eB is a

point of [PM ↑w] that lies in the relative interior of r ·∆(n). �

Definition 1.4. Let M be a matroid on [n] and let w ∈ Rn. The set

B̃(M) := {w ∈ Rn |Mw has no loops}
is called the Bergman fan of M (see the following Proposition for a justification of this name).

Proposition 1.5. We have

B̃(M) =
⋃

F face of PM

F∩relint(r·∆(n)) 6=∅

NF (†)

and the set of cones on the right-hand side is a subfan of the normal fan to PM .

Proof. We start with proving the following claim.

Claim. If w ∈ B̃(M), then N[PM↑w] ⊆ B̃(M).

Proof. It is enough to prove that if Mw is loop-less, then so is Mw′ for every w′ ∈ N[PM↑w].
Now, by Equation (1), w′ ∈ N[PM↑w] implies [PM ↑w′] ⊇ [PM ↑w] and thus

[PM ↑w′] ∩ relint(r ·∆(n)) ⊇ [PM ↑w] ∩ relint(r ·∆(n)) 6= ∅.
The last inequality holds by Lemma 1.3, and the same Lemma applied to w′ now proves
the claim.

The claim implies immediately the set-theoretic equality (†). For the second assertion we have to
prove that the set of cones on the right-hand side of (†) contains all faces of each of its elements.
But faces of NF are of the form NQ for faces Q ⊇ F , and if F meets the relative interior of r ·∆(n),
so does every Q ⊇ F . �

2. An explicit description....

2.1. ... of Mw.

Definition 2.1. For any given w = (w1, . . . , wn) ∈ Rn let us partition the set [n] into blocks, so
that elements of the same block index coordinates of w with the same value.

Precisely, consider the equivalence relation ∼w on [n] with i ∼w j if and only if wi = wj .
Let π1, . . . , πs be the equivalence classes of ∼w, numbered in order of decreasing value – i.e., for
πk = [wi] and πl = [wj ], we have k < l if and only if wi > wj .

Let us now define a chain of subsets of [n] as follows:

Φ(w) := {Fw
i }i=0,...,s, with Fw

0 := ∅, Fw
i := π1 ∪ . . . ∪ πi for all i > 0.

Our next goal is to prove the following theorem.

Theorem 2.2. A vector w ∈ Rn is contained in B̃(M) if and only if all Fw
i are flats of M .

We start with an explicit expression of Mw in terms of the family Φ(w).

Proposition 2.3. Let M be a matroid on [n] and w ∈ Rn. Then

Mw =

s⊕
i=1

M [Fw
i ]/Fw

i−1,

where {Fw
i }i=1,...,s is as above.

Proof. We start with an auxiliary claim that will unlock a recursive proof.
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Claim. Mw = M [Fw
s−1]w ⊕M/Fw

s−1.

Proof. Let Ws−1 denote the value of 〈x|w〉 on any basis of M [Fw
s−1]w, and let d be the

difference between the rank of M and that of M [Fw
s−1].

For every basis B of M we can complete B ∩Fw
s−1 to a basis (B ∩Fw

s−1 ]A) of M [Fw
s−1]

and we have

〈w|eB〉 = 〈w|e(B∩Fs−1)〉+ (|A|+ d)ws ≤ 〈w|e(B′∩Fs−1)〉+ |A|ws−1 + dws

≤ 〈w|e(B∩Fs−1)∪A〉+ dws ≤Ws−1 + dws

(where in the first equality we used that |A|+ d = |B \Fs−1|). In this series of inequalities,
equality holds throughout if and only if |A| = 0 and 〈w|e(B∩Fs−1)∪A〉 = Ws−1, i.e., if and
only if B ∩ Fs−1 is a basis of M [Fw

s−1]w.
Now, if B is any basis or the r-h.s. of the claim, then B is a basis of M [Fw

s−1]⊕M/Fw
s−1

and, by definition of contraction, is a basis of M . Moreover, in this case equality is attained
because B ∩ Fw

s−1 is a basis of M [Fw
s−1] by definition of B. Hence, B is a basis of Mw. In

general, the bases of Mw are exactly those bases B of M for which 〈w|eB〉 = Ws−1 + dws.
These are precisely those with B ∩ Fs−1 ∈ B(M [Fw

s−1]w), i.e., those that are bases of
M [Fw

s−1]w ⊕M/Fw
s−1.

We can apply the claim repeatedly, obtaining

Mw = M [Fw
s−1]w ⊕M/Fw

s−1 =
(
M [Fw

s−2]w ⊕M [Fw
s−1]/Fw

s−2

)
⊕M/Fw

s−1 = ...

reaching the decomposition

Mw = M [Fw
1 ]⊕ · · · ⊕M [Fw

s−2]/Fw
s−3 ⊕M [Fw

s−1]w/F
w
s−2 ⊕M/Fw

s−1.

Since M [Fw
1 ]/Fw

0 = M [Fw
1 ]/∅ = M [Fw

1 ] and M [Fw
s ]/Fw

s−1 = M [[n]]/Fw
s−1 = M/Fw

s−1, the claim
follows. �

Proof of Theorem 2.2. Let M be a matroid on [n] and w ∈ Rn. By Proposition 2.3, it is enough to
prove that

⊕s
i=1M [Fw

i ]/Fw
i−1 is loop-less if and only if all Fw

i are flats. To this end, notice that for
every loop e in the direct sum there is an index i such that e is a loop in the summand M [Fw

i ]/Fw
i−1,

and the loops of M [Fw
i ]/Fw

i−1 are exactly the elements of cl(Fw
i−1) \ Fw

i−1. By definition, the latter
set is empty if and only if Fw

i−1 is a flat. �

2.2. ... of B̃(M). We are led to consider chains of flats.

Definition 2.4. Given a matroid M , let L(M) denote the set of all flats of M . Moreover, let
L(M) := L(M) \ {cl(∅), [n]} denote the set of all flats with the smallest and the biggest removed.

By a chain in either L(M) or L(M) we mean a set Φ = {F1 ⊆ F2, . . .} of increasing elements of
L(M) or L(M), respectively. The set of all chains in L(M), resp. L(M) is commonly denoted by
∆(L(M)), resp. ∆(L(M)).

The next definition associates two polyhedra to a family of subsets of a ground set.

Definition 2.5. For a given family Φ ⊆ 2[n] of subsets of [n] let

ΓΦ := cone{eF | F ∈ Φ}
and for every matroid M let

Γ(M) := {ΓΦ}Φ∈∆(L(M)).

Moreover, write 1 := e[n] ∈ Rn for the all-one vector.

Lemma 2.6. If Φ is an increasing family of subsets of [n] and w ∈ ΓΦ, then Φ(w) ⊆ Φ.

Proof. By definition, w ∈ ΓΦ implies that w =
∑

F∈Φ λF eF with λF ≥ 0 for all F . Then, Φ(w) =
{F ∈ Φ | λF > 0}. �
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Lemma 2.7. Let M be a matroid and Φ ∈ ∆(L(M)). Then ΓΦ is a simplicial cone, whose faces are

all ΓΨ with Ψ ⊆ Φ (we set Γ∅ = {0}). Moreover, given Φ,Φ′ ∈ ∆(L(M)) we have ΓΦ∩ΓΦ′ = ΓΦ∩Φ′ .
In particular, Γ(M) is a (simplicial) fan.

Proof. The set {eF | F ∈ Φ} is linearly independent (because of the strict containment relation
among the Fi), thus ΓΦ is simplicial, and in particular its faces are the cones generated by all
subsets of {eF | F ∈ Φ}, i.e., the cones of the form ΓΨ with Ψ ⊆ Φ.

For the statement about intersections, let Φ1,Φ2 ∈ ∆(L(M)). Now, by Lemma 2.6 any w ∈
ΓΦ1 ∩ ΓΦ2 must have Φ(w) ⊆ Φ1 ∩Φ2, from which w ∈ ΓΦ1∩Φ2 . The inclusion ΓΦ1∩Φ2 ⊆ ΓΦ1 ∩ ΓΦ2

is evident, and the claim follows. �

With this, we can draw some more consequences from Theorem 2.2.

Proposition 2.8. Let M be a matroid on the ground set [n]. Then

B̃(M) =
⋃

Φ∈∆(L(M))

ΓΦ + R1, (‡)

and the right-hand side defines a polyhedral fan that is combinatorially isomorphic to Γ(M).

Proof. Observe that, for all w ∈ Rn,

Φ(w) = Φ(w + t1) for all t ∈ R. (2)

Now, elements of the right-hand side of (‡) are 1-translates of elements of (some face of) some ΓΦ

for Φ ∈ ∆(L(M)); i.e., w ∈ Rn is in the r.-h.s. if and only if there is t ∈ R and Ψ ∈ ∆(L(M)) such
that Φ(w + t1) = Ψ. By (2), this is equivalent to requiring Φ(w) ⊆ ∆(L(M)), i.e., (by Theorem

2.2) w ∈ B̃(M). This proves the set-theoretic equality.
In order to prove that the collection GM of all cones appearing in the r.-h.s of (‡). is a fan, notice

first that

ΓΦ + 1R = cone({eF | F ∈ Φ} ∪ {1,−1})
In particular, every member of GM is a cone, whose faces are of the form cone(A) for some A ⊆
{eF | F ∈ Φ} ∪ {1,−1}. Now, if cone(A) is a face, say with defining inequality 〈a|x〉 ≤ b, then
〈a|x+R1〉 ≤ b, hence a ⊥ 1 and in particular A ⊃ {±1}. Therefore, every face of the cone ΓΦ +1R
must be of the form ΓΨ + 1R for some Ψ ⊆ Φ, thus GM contains every face of each of its members.
Conversely, given any Ψ = {Fw

i1
, Fw

i2
, . . .} ( Φ,

consider the vector

aΨ :=

(
1

1−|Fw
i1
|
,

1

1−|Fw
i1
|
, . . . ,

1

1−|Fw
i1
|
, 1︸ ︷︷ ︸

Fw
i1

- coordinates

,
1

1−|Fw
i2
\Fw

i1
|
,

1

1−|Fw
i2
\Fw

i1
|
, . . . ,

1

1−|Fw
i2
\Fw

i1
|
, 1

︸ ︷︷ ︸
Fw

i2
- coordinates

, . . .

)
,

(3)
where we ordered entries so that the last coordinate of Fw

ij
is not contained in Fw

ij−1 (hence also

not contained in any Fw
i with ij−1 < i < ij). One checks that 〈aΨ|eF 〉 = 0 for F ∈ Ψ ∪ {±1}

and 〈aΨ|eF 〉 < 0 for F ∈ Φ \ Ψ. Thus, every ΓΨ + R1 is a face of ΓΨ + R1. In particular, given
Φ1,Φ2 ∈ ∆(L(M)) the set

(ΓΦ1 + 1R) ∩ (ΓΦ2 + 1R) = (ΓΦ1 ∩ ΓΦ2) + 1R = ΓΦ1∩Φ2 + 1R

is a face of both cones ΓΦi +1R, i = 1, 2 (the displayed equalitites follow by Lemma 2.7). This proves
that the intersection of any two members of GM is a face of both, thus GM is a fan. Moreover, the
same observation shows that the correspondence ΓΦ 7→ ΓΦ + 1R defines the desired combinatorial
isomorphism. �
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Remark 2.9. Notice that the fan structures in (†) and (‡) are different: the latter has, in general,
more cones. One usually refers to (‡) as the fine subdivision, and to (†) as the coarse subdivision
of the Bergman fan. If M is connected, the rays of the fine subdivision that are also rays of the
coarse subdivision are exactly the Γ{F} where F is a flacet.

Remark-Definition 2.10. From Proposition 2.8 we have that translation by 1 preserves B̃(M)
and its fan structure. Thus there is no loss of information in considering, as one often does in
tropical geometry, the Bergman fan as a subset of the quotient Rn/R1. In order to study this
situation let πT denote the orthogonal projection onto the hyperplane T = 1⊥ (with equation∑

i∈[n] xi = 0), and let

B(M) := πT (B̃(M)).

Lemma 2.11. We have

B(M) =
⋃

Φ∈∆(L(M))

πT (ΓΦ),

where the union on the right-hand side defines a (simplicial) fan structure that refines the coarse
structure given by {πT (N[PM↑w])}w∈T (see Equation (†)).

Proof. The set-theoretic union follows from Proposition 2.8 by definition of B(M). We have to
prove that {πT (ΓΦ)}Φ∈∆(L(M)) is a fan.

To this end, notice that since {1}∪ {eF | F ∈ Φ} is a linearly independent set, the set {πT (eF ) |
F ∈ Φ} is linearly independent in T . Therefore πT (ΓΦ) = cone{πT (eF ) | F ∈ Φ}, and this is a
simplicial cone; in particular, its faces are the πT (ΓΨ) with Ψ ⊆ Φ. We are left with considering
intersections of cones. Let Φ1,Φ2 ∈ ∆(L(M)). Obviously πT (ΓΦ1) ∩ πT (ΓΦ2)

To this end, recall the proof of Proposition 2.8 and in particular that the facets of the cone
ΓΦ + R1 are exactly the hyperplanes orthogonal to the vectors aΦ\{F} defined in (3), where F

ranges in Φ. Now, obviously πT (ΓΦ) = πT (ΓΦ + R1) = (ΓΦ + R1) ∩ T , and since aΨ ⊆ T for
all Ψ, the set πT (ΓΦ) is defined, inside the vectorspace T , by the intersection of the halfspaces
〈x|aΦ\{F}〉 ≥ 0, all bounded by hyperplanes (aΦ\{F})

⊥ containing the origin. Therefore πT (ΓΦ) is

a simplicial cone whose faces are all πT (ΓΨ) for Ψ ⊆ Φ. Moreover, for any Φ1,Φ2 with Lemma 2.7
we have

πT (ΓΦ1) ∩ πT (ΓΦ2) = ∩πT (ΓΦ1 ∩ ΓΦ2) = πT (ΓΦ1∩Φ2),

proving that {πT (ΓΦ)}Φ∈∆(L(M)) is a fan in T , combinatorially isomorphic to Γ(M). �

Remark-Definition 2.12. The fan B(M) is the cone over a cell complex denoted by B(M) and
called the Bergman complex of M (one way to see this is to think about B(M) as the intersection

of B̃(M) with the unit sphere in T ). In order to express this complex, for a given family Φ ⊆ 2[n]

of subsets of [n] let

γΦ := conv{eF | F ∈ Φ}, γ(M) :=
⋃

Φ∈∆(L(M))

γΦ.

Proposition 2.13. Let M be a matroid.

(1) The collection {γΦ}Φ∈∆(L(M)) defines a structure of simplicial complex on the space γ(M).

(2) The projection πT induces a (linear) isomorphism of simplicial complexes between γ(M)
and πT (γ(M)) =

⋃
Φ∈∆(L(M)) πT (γΦ).

(3)

B(M) = coneπT (γ(M))

Proof. Exercise. �
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Remark 2.14. The content of this proposition can be summarized as saying that the simplicial
complex γ(M) is isomorphic to a subdivision of the Bergman complex B(M). In fact, sometimes
the name “Bergman complex” is used to refer to γ(M).

Visualisation Method 2.15. In order to think about the Bergman fan B̃(M) one usually ignores

the lineality space R1 – essentially thinking about something like B(M). In order to draw this
simplicial complex, one exploits Proposition 2.13 and draws a representation of γ(M), a simplicial
complex whose vertices are the flats of M (except the minimal and the maximal one) and whose
simplices correspond to increasing chains of flats.

If M is connected, we can recover the structure of B̃(M) by noting that the vertices of the

simplicial complex that correspond to rays of B̃(M) are those eF such that F is a flacet.

3. Sources and references

Section 1 follows [2], and the approach of Section 2 is inspired by [1]. An alternative treatment
of a selection from the material of Lectures 2,3,4 is in [3], where one finds also a brief treatment
of normal fans of polytopes. For more on the latter subject, see [4]. The notations follow the
commonalities of [1, 2, 3].
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