Matroid theory with a view on tropical geometry Emanuele Delucchi
Lecture 3 BeNeFri, Fall 2020

NOTES FOR LECTURE 3

Note: A detailed list of sources and references can be found at the end of the document.

RECALL (E.G., FROM WARM-UP):
Given any polytope P in R™ and any vector w € R™, the set

[Ptw] := argmax{w | )
reP
of points of P where the linear form z — (w|z) attains its maximum is a face

of P, and every face of P has this form.
The collection A (P) := {Ng} where @) ranges over all faces of P and

Ng :={weR"[QC [PTw]}, (1)

is a fan, called the normal fan of P.

1. THE BERGMAN FAN

In the proof of Proposition 2.13 from Lecture Notes 2 we associate to every flacet F' the matroid
MfF corresponding to the facet of Py; determined by the valid inequality ), x; < rk(F). Explic-
itly, this face is [Py Ter], the set of points of Py; where the linear form (ep|z) = >, x; takes its
maximum value (this maximal value is rk(F')).

We want to generalize this construction.

Definition 1.1. Let M be a matroid on [n] and let w € R™. Call M,, the matroid with
PMw = [PMT’U]]

This is well-defined because from Lecture 2 we know that every face of a matroid polytope is again
a matroid polytope, and that the matroid polytope completely determines the matroid.

Digression-Remark 1.2. Let F' be a flacet of a connected matroid M. Then M., = Mg, as
defined in Proposition 2.13 of Lecture 2, where the matroids that appear are, in particular, loopless.
We aim at generalizing this description to every face of Pp; that intersects the relative interior of
the simplex r - A,

Lemma 1.3. Let M be a matroid of rank v on [n] and let w € R™. The following are equivalent.
(1) M, has no loops.

(2) Every element of the ground set [n] appears in some basis of M.
(3) The face [Pyt w)] intersects the (relative) interior of r- A,

Proof. For the equivalence of (1) and (2) notice that by definition bases are the inclusion-maximal
independent sets: thus, for an element e to be contained in some basis is equivalent to the set {e}
to have rank 1. Since e is a loop if and only if {e} has rank 0, we conclude that e is contained in
some basis if and only if e is not a loop. The equivalence of (1) and (2) follows.

Now for the equivalence of (2) and (3). The relative interior of r - A consists of the points
x € T with z; > 0 for all i € [n]. On the other hand, every point p € [Py T w] is in the convex
hull of the vertices of [Py T w], i.e., of all vectors ep where B runs over all bases of M, — this

1



NOTES FOR LECTURE 3 2

means p = ZBGBMw Apep for some Ag > 0 with " Ap = 1. On the one hand, this shows that
for every nonzero coordinate i of P there must be a basis of M,, with ¢ € B. Thus, if there is
p € [Py T w] Nrelintr - A then all coordinates of p are nonzero and so every element of [n]
appears in some basis of M,,. Conversely, if UBeB(Mw) = [n] then p := ZBeB(Mw) meg is a

point of [Py Tw] that lies in the relative interior of - A, O
Definition 1.4. Let M be a matroid on [n] and let w € R™. The set

B(M) := {w € R" | M, has no loops}
is called the Bergman fan of M (see the following Proposition for a justification of this name).

Proposition 1.5. We have
B(M) = U N (1)

F face of Pyr
Frirelint(r-A™)#£(

and the set of cones on the right-hand side is a subfan of the normal fan to Pas.
Proof. We start with proving the following claim.
Claim. If w € B(M), then Nip, ) C B(M).
Proof. Tt is enough to prove that if M, is loop-less, then so is M, for every w’ € NiPystw]-
Now, by Equation (1), w" € Nip,,) implies [Py Tw'] 2 [Pas Tw] and thus
[Patw'] Nrelint(r - AM™Y) D [Py tw] Nrelint (r - AM™) £ (.
The last inequality holds by Lemma 1.3, and the same Lemma applied to w’ now proves
the claim.

The claim implies immediately the set-theoretic equality (). For the second assertion we have to
prove that the set of cones on the right-hand side of () contains all faces of each of its elements.
But faces of N are of the form Ng for faces Q@ 2 F, and if F' meets the relative interior of r - A
so does every Q DO F. O

2. AN EXPLICIT DESCRIPTION....
2.1. ... of M,.

Definition 2.1. For any given w = (wy,...,w,) € R™ let us partition the set [n] into blocks, so
that elements of the same block index coordinates of w with the same value.

Precisely, consider the equivalence relation ~,, on [n] with i ~,, j if and only if w;, = wj.
Let my,...,ms be the equivalence classes of ~,,, numbered in order of decreasing value — i.e., for
7, = [w;] and m = [w;], we have k < [ if and only if w; > w;.

Let us now define a chain of subsets of [n] as follows:

O(w) :={F"}i=0,...s, with Fy:=0, F':=mU...Um foralli>D0.
Our next goal is to prove the following theorem.
Theorem 2.2. A vector w € R" is contained in @(M) if and only if all F}Y are flats of M.
We start with an explicit expression of M, in terms of the family ®(w).
Proposition 2.3. Let M be a matroid on [n] and w € R™. Then
M, = P M[F")/F,

i=1
where {F}"};=1, s is as above.

Proof. We start with an auxiliary claim that will unlock a recursive proof.
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Claim. My = M[F* (] ® M/F¥ ;.

Proof. Let W,_1 denote the value of (z|w) on any basis of M[F¥ ;].,, and let d be the
difference between the rank of M and that of M[F ,].

For every basis B of M we can complete BN F¥ ; to a basis (BNFY¥ ;W A) of M[F¥ ]
and we have

(wlep) = (wlegnr,_,)) + (Al + d)ws < (wlepnp,_,)) + [Alws—1 + dw,
< <w|6(BmF3,1)uA> +dws < Wi_q + dwg
(where in the first equality we used that |A| +d = |B\ Fs—_1|). In this series of inequalities,
equality holds throughout if and only if [A| = 0 and (w|e(pnr,_,)ua) = Ws_1, i.e., if and
only if BN Fs_ is a basis of M[FY {]..

Now, if B is any basis or the r-h.s. of the claim, then B is a basis of M[FY ;]® M/F¥
and, by definition of contraction, is a basis of M. Moreover, in this case equality is attained
because BN FY , is a basis of M[F¥ ;] by definition of B. Hence, B is a basis of M,,. In
general, the bases of M,, are exactly those bases B of M for which (w|ep) = Ws_1 + dws.
These are precisely those with B N Fs_y € B(M[F¥ ]y), i.e., those that are bases of
MIF2 ) & M/F2.,.

We can apply the claim repeatedly, obtaining
My = M[F ]w & M/F, = (M[F:iz]w ® M[F;‘il]/F;Uﬁ) OM/FL, = ...
reaching the decomposition
My = MFY]| & @ M[F,|/FLs® MF ]w/F o & M/F .
Since M[F{|/Fy = M[F}{]/0 = M[F}{*] and M[F¥?]/F*, = M|[[n]]/F*, = M/F¥ , the claim
follows. O

Proof of Theorem 2.2. Let M be a matroid on [n] and w € R™. By Proposition 2.3, it is enough to
prove that @;_, M[F]/F" is loop-less if and only if all F* are flats. To this end, notice that for
every loop e in the direct sum there is an index ¢ such that e is a loop in the summand M[F"]/F" ,,
and the loops of M[F}']/F}*, are exactly the elements of cl(F;”) \ F}*,. By definition, the latter
set is empty if and only if F}¥, is a flat. O

2.2. ... of B(M). We are led to consider chains of flats.

Definition 2.4. Given a matroid M, let £(M) denote the set of all flats of M. Moreover, let

L(M) = L(M)\ {cl(D),[n]} denote the set of all flats with the smallest and the biggest removed.
By a chain in either £(M) or £L(M) we mean a set ® = {F; C Fy, ...} of increasing elements of

L(M) or L(M), respectively. The set of all chains in £(M), resp. L(M) is commonly denoted by

A(L(M)), resp. A(L(M)).
The next definition associates two polyhedra to a family of subsets of a ground set.
Definition 2.5. For a given family ® C 2[" of subsets of [n] let
I'? := cone{er | F € ®}
and for every matroid M let
(M) := {I“I’}%A(Z(M)).
Moreover, write 1 := ef,) € R™ for the all-one vector.

Lemma 2.6. If ® is an increasing family of subsets of [n] and w € T'®, then ®(w) C ®.

Proof. By definition, w € I'® implies that w = Y . Arer with Ap > 0 for all F. Then, ®(w) =
{Fe®| >0} O
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Lemma 2.7. Let M be a matroid and ® € A(L(M)). ThenT'® is a simplicial cone, whose faces are
allTY with ¥ C & (we set T = {0}). Moreover, given ®,®" € A(L(M)) we have T®NI'® = 1*N?’,
In particular, T(M) is a (simplicial) fan.

Proof. The set {ep | F € ®} is linearly independent (because of the strict containment relation
among the F};), thus I'® is simplicial, and in particular its faces are the cones generated by all
subsets of {er | F € ®}, i.e., the cones of the form T'Y with ¥ C &.

For the statement about intersections, let ®;,®y € A(L(M)). Now, by Lemma 2.6 any w €
I'®1 N I'®2 must have ®(w) C ®; N @y, from which w € I'*1"®2. The inclusion [*17%2 C 1 NP2

is evident, and the claim follows. O
With this, we can draw some more consequences from Theorem 2.2.

Proposition 2.8. Let M be a matroid on the ground set [n]. Then
#M)= |J T®+R1, (1)

DEA(L(M))
and the right-hand side defines a polyhedral fan that is combinatorially isomorphic to T'(M).
Proof. Observe that, for all w € R™,
O(w) = ¢(w + 1) for all t € R. (2)

Now, elements of the right-hand side of (}) are 1-translates of elements of (some face of) some I'®

for ® € A(L(M)); i.e., w € R™ is in the r.-h.s. if and only if there is t € R and ¥ € A(L(M)) such
that ®(w + t1) = . By (2), this is equivalent to requiring ®(w) C A(L(M)), i.e., (by Theorem
22)we @(M ). This proves the set-theoretic equality.

In order to prove that the collection ¢y, of all cones appearing in the r.-h.s of (}). is a fan, notice
first that

I'? + 1R = cone({er | F € ®} U {1, -1})

In particular, every member of ¥ is a cone, whose faces are of the form cone(A) for some A C
{er | F € ®} U {1,—-1}. Now, if cone(A) is a face, say with defining inequality (a|z) < b, then
{a|r+R1) < b, hence a L 1 and in particular A D {41}. Therefore, every face of the cone I'® + 1R
must be of the form I'V + 1R for some ¥ C ®, thus ¥, contains every face of each of its members.

Conversely, given any ¥ = {F}*, F}¥,...} C ®,
consider the vector
1 1 1 1 1 1
ay = — s — 1, e T o Lo ],
1-[FY] 1= |FY| 1= [F] 7 1= [FO\FY | 1= [FE\FY| 1= [F\FY|

Fl?; - coordinates

Fil; - coordinates
(3)
where we ordered entries so that the last coordinate of F} is not contained in F;¥_; (hence also
not contained in any F}* with ¢;_1 < ¢ < i;). One checks that (aw|ep) = 0 for F € T U {£1}
and (ayler) < 0 for F € &\ ¥. Thus, every I'Y + R1 is a face of I'Y + R1. In particular, given

Dy, Py € A(L(M)) the set
T* +1R)N(IT* +1R) = (T NT*?) + 1R =" 4 1R

is a face of both cones I'** +1R, i = 1,2 (the displayed equalitites follow by Lemma 2.7). This proves
that the intersection of any two members of ¥, is a face of both, thus ¢, is a fan. Moreover, the
same observation shows that the correspondence I'® — I'® 4+ 1R defines the desired combinatorial
isomorphism. O
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Remark 2.9. Notice that the fan structures in (1) and (1) are different: the latter has, in general,
more cones. One usually refers to (I) as the fine subdivision, and to (1) as the coarse subdivision
of the Bergman fan. If M is connected, the rays of the fine subdivision that are also rays of the
coarse subdivision are exactly the T1¥} where F is a flacet.

Remark-Definition 2.10. From Proposition 2.8 we have that translation by 1 preserves Z(M)
and its fan structure. Thus there is no loss of information in considering, as one often does in
tropical geometry, the Bergman fan as a subset of the quotient R™/R1. In order to study this
situation let 77 denote the orthogonal projection onto the hyperplane 7' = 1+ (with equation
Yicm) i = 0), and let

B(M) := 1o (B(M)).

Lemma 2.11. We have
B(M) = U WT(Fq))a

DEA(L(M))
where the union on the right-hand side defines a (simplicial) fan structure that refines the coarse

structure given by {7 (Nipypw)) bwer (see Equation (1))

Proof. The set-theoretic union follows from Proposition 2.8 by definition of %(M). We have to
prove that {WT(F‘I’)}(%A(Z(M)) is a fan.

To this end, notice that since {1} U{er | F € ®} is a linearly independent set, the set {mr(er) |
F € ®} is linearly independent in T. Therefore 77 (I'®?) = cone{nr(er) | F € ®}, and this is a
simplicial cone; in particular, its faces are the w7 (I'Y) with ¥ C ®. We are left with considering
intersections of cones. Let ®1, Py € A(L(M)). Obviously 77 (I'®1) N 7w (0®2)

To this end, recall the proof of Proposition 2.8 and in particular that the facets of the cone
I'® + R1 are exactly the hyperplanes orthogonal to the vectors ag\(py defined in (3), where F'
ranges in ®. Now, obviously 77(I'?) = 77(I'® + R1) = (I'®* + R1) N 7, and since ay C T for
all ¥, the set mp(I'?) is defined, inside the vectorspace T, by the intersection of the halfspaces
(z|ag\{ry) = 0, all bounded by hyperplanes (ag\(r})" containing the origin. Therefore 77 (I'?) is
a simplicial cone whose faces are all 77 (') for ¥ C ®. Moreover, for any ®;, ®, with Lemma 2.7
we have

7 (D% N7 (0%2) = N (TP N TP2) = oy (TF20P2),

proving that {WT(F(D)}(%A(Z(M)) is a fan in T, combinatorially isomorphic to I'(M). O

Remark-Definition 2.12. The fan (M) is the cone over a cell complex denoted by (M) and
called the Bergman complex of M (one way to see this is to think about (M) as the intersection

of (M) with the unit sphere in 7). In order to express this complex, for a given family ® C 2["!
of subsets of [n] let

7?® = conv{er | F € 9}, y(M) = U 72,

PEA(L(M))
Proposition 2.13. Let M be a matroid.

(1) The collection {'Vq>}<1>eA(Z(M)) defines a structure of simplicial complex on the space v(M).

(2) The projection wr induces a (linear) isomorphism of simplicial complezes between (M)
and mp(y(M)) = U«peA(Z(M)) mr(y?).

(3) B
B(M) = conenp(y(M))

Proof. Exercise. O
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Remark 2.14. The content of this proposition can be summarized as saying that the simplicial
complex (M) is isomorphic to a subdivision of the Bergman complex #(M). In fact, sometimes
the name “Bergman complex” is used to refer to y(M).

Visualisation Method 2.15. In order to think about the Bergman fan QASZ(M ) one usually ignores
the lineality space R1 — essentially thinking about something like Z(M). In order to draw this
simplicial complex, one exploits Proposition 2.13 and draws a representation of (M), a simplicial
complex whose vertices are the flats of M (except the minimal and the maximal one) and whose
simplices correspond to increasing chains of flats. B

If M is connected, we can recover the structure of Z(M) by noting that the vertices of the
simplicial complex that correspond to rays of QZ(M ) are those ep such that F is a flacet.

3. SOURCES AND REFERENCES

Section 1 follows [2], and the approach of Section 2 is inspired by [1]. An alternative treatment
of a selection from the material of Lectures 2,3,4 is in [3], where one finds also a brief treatment
of normal fans of polytopes. For more on the latter subject, see [4]. The notations follow the
commonalities of [1, 2, 3].
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