NOTES FOR LECTURE 2

This Lecture Notes follow the treatment of this subject given in the papers by Gel'fand-Goresky-MacPherson-Serganova and by Feichtner-Sturmfels that are includer in the literature folder.

1. MATROID POLYTOPES

1.1. **Basic definitions.** Let $n \in \mathbb{N}$. The *standard-simplex* Δ in \mathbb{R}^n is the convex hull of the standard basis vectors,

$$\Delta := \operatorname{conv} \{ e_i \mid i = 1, \dots, n \} \subseteq \mathbb{R}^n.$$

We write $\Delta^{(n)}$ if specification is needed. Notice that every edge of Δ is parallel to some vector of the form $e_i - e_j$ for $i, j \in [n]$.

Recall that we write $[n] := \{1, ..., n\}$ and, for $r, n \in \mathbb{N}$, $\binom{n}{r} := \{A \subseteq [n] \mid |A| = r\}$.

Moreover, for any subset $A \subseteq [n]$ we write

$$e_A := \sum_{i \in A} e_i \in \mathbb{R}^n$$

for the sum of the basis vectors indexed by elements of A.

Definition 1.1. Given any family $\mathcal{X} \subseteq 2^{[n]}$, we consider then the polytope

$$P_{\mathcal{X}} := \operatorname{conv}\{e_X \mid X \in \mathcal{X}\}.$$

1.2. The main theorem.

Theorem 1.2 (Gel'fand-Goresky-Macpherson-Serganova). A nonempty family $\mathcal{B} \subseteq {n \choose r}$ is the set of bases of a rank r matroid on the ground set [n] if and only if all edges of $P_{\mathcal{B}}$ are parallel to edges of Δ .

Remark 1.3. Often the statement of Theorem 1.2 is formulated in terms of a subset of vertices of the "hypersimplex" $P_{\binom{n}{r}}$ rather than "a nonempty family $\mathcal{B} \subseteq \binom{n}{r}$ ". The equivalence is obvious.

We comment on one aspect of the alternative formulation that is not immediatly apparent in ours: if $\mathcal{B} \subseteq \binom{n}{r}$, then the set of vertices of $P_{\mathcal{B}}$ is exactly $\{e_B \mid B \in \mathcal{B}\}$. In order to see this, given $X \in \binom{n}{r}$ consider the linear functional $\ell_X : \mathbb{R}^n \to \mathbb{R}, x \mapsto \langle e_X \mid x \rangle$. Then, $\ell_X(e_Y) \leq |X|$ for all $Y \in \binom{n}{r}$, with equality if and only if X = Y. In particular, e_X cannot be a convex combination of any subset of the $e_Y, Y \in \binom{n}{r} \setminus \{X\}$.

Definition 1.4. Given a matroid M we will write P_M for $P_{\mathcal{B}(M)}$. Every such polytope is called a *matroid polytope*.

Proof of Theorem 1.2. We prove only one direction, and leave the other as a reading assignment, from the original paper (§4.3 of the paper by Gel'fand, Goresky, MacPherson and Serganova, available in the literature folder).

Assume then that every edge of the nonempty polytope $P_{\mathcal{B}}$ is parallel to a vector of the form $e_i - e_j$ for some $i, j \in [n]$. We have to prove that \mathcal{B} satisfies axiom ($\mathcal{B}2$). Let then $B_1, B_2 \in \mathcal{B}$. Up

 P_M (Matroid polytope)

to re-ordering the coordinates we can assume that

$$e_{B_1} = (1, \dots, 1, 0, \dots, 0, 1, \dots, 1, 0, \dots, 0)$$

$$e_{B_2} = (\underbrace{0, \dots, 0}_{A\text{-coord.}}, \underbrace{1, \dots, 1}_{B\text{-coord.}}, \underbrace{1, \dots, 1}_{C\text{-coord.}}, \underbrace{0, \dots, 0}_{D\text{-coord.}})$$

For some partition $[n] = A \uplus B \uplus C \uplus D$.

Now, by convexity of $P_{\mathcal{B}}$ the segment between e_{B_1} and e_{B_2} is fully contained in $P_{\mathcal{B}}$, which is contained in the vertex cone $C(P_{\mathcal{B}}, v)$ of $P_{\mathcal{B}}$ at $v := e_{B_1}$. The vertex cone was treated in the Warm-up to this lecture, where it was also explained that this cone is generated by the directions of the edges emanating from v, and is based at v. In particular,

$$e_{B_2} - e_{B_1} = (-1, \dots, -1; 1, \dots, 1; 0, \dots, 0; 0, \dots, 0) = \sum_{\substack{\text{conv}\{v, w\} \text{ is} \\ \text{edge of } P_{\mathcal{B}}}} \lambda_w(w - v) \tag{\dagger}$$

with all $\lambda_w \in \mathbb{R}_{\geq 0}$. Now by assumption for every vertex w of $P_{\mathcal{B}}$ appearing in (†) the vector w - vis a positive multiple of $e_i - e_j$ for some $i, j \in [n]$, i.e., in coordinates i and j we have $w_i > v_i$ and $w_j < v_j^{1}$. Now both v and w are 0 - 1 vectors (as is the case for every vertex of $P_{\mathcal{B}}$), thus necessarily $v_i = (e_{B_1})_i = 0$ and $v_j = (e_{B_1})_j = 1$. This means that $i \in B \cup D$ and $j \in A \cup C$.

In particular, on the r.h.s of (†) there is never a negative contribution to coordinates in D. This implies that, if $\lambda_w > 0$, then $i \notin D$, since otherwise we'd have a positive contribution of e_i to a D-coordinate that can't be cancelled by other terms. Analogously, $j \notin C$ whenever $\lambda_w > 0$.

In summary, for every vertex w adjacent to v such that $\lambda_w > 0$ in (\dagger) , if $e_i - e_j$ is the direction of the edge between w and v then $i \in B$ and $j \in A$.

Now we return to checking ($\mathcal{B}2$). Let $b \in B_1 \setminus B_2$ and recall that in fact $B_1 \setminus B_2 = A$. Then $(e_{B_1} - e_{B_2})_b = -1$, and so there must be w with $\lambda_w > 0$ in (\dagger) such that w - v is a positive multiple of $e_{b'} - e_b$ for some $b' \in B = B_2 \setminus B_1$. Since w and v are vertices of $P_{\mathcal{B}} \subseteq \{x \mid 0 \leq |x_k| \leq 1 \text{ for all } k\}$, in fact $w - v = e_{b'} - e_b$. Thus, for the $B' \in \mathcal{B}$ such that $w = e_{B'}$ we have

$$B' = (B_1 \setminus \{b\}) \cup \{b'\},$$

and the proof is complete.

Some corollaries follow directly from Theorem 1.2.

Corollary 1.5. Every face of a matroid polytope is a matroid polytope.

Corollary 1.6. Every matroid polytope is a subset of the simplex $r \cdot \Delta$, where r is the rank of the matroid and $\Delta = \Delta^{(n)}$, with n the cardinality of the ground set. Notice that $r \cdot \Delta$ is described by $x_1 \ge 0, \ldots, x_n \ge 0$ and $\sum_i x_i = r$.

1.3. Flats and flacets. Our next goal is to determine which inequalities determine a matroid polytope as a subset of $r \cdot \Delta$. To this end we need a definition.

Definition 1.7. Let M be a matroid with rank function rk on the ground set E. A subset $F \subseteq E$ is called a *flat* of M if $\mathrm{rk}(F \cup \{e\}) > \mathrm{rk}(F)$ for all $e \in E \setminus F$.

Lemma 1.8. Let F_1, F_2 be flats of M. Then, $F_1 \cap F_2$ is a flat of M.

Proof. Let $e \in E \setminus (F_1 \cap F_2)$. In particular, there is $j \in \{1, 2\}$ for which $e \notin F_j$. Then,

 $\operatorname{rk}(F_j) + \operatorname{rk}((F_1 \cap F_2) \cup \{e\}) \ge \operatorname{rk}(F_1 \cap F_2) + \operatorname{rk}(F_j \cup \{e\}).$

Since F_j is a flat, $\operatorname{rk}(F_j) < \operatorname{rk}(F_j \cup \{e\})$, and the inequality above implies $\operatorname{rk}(F_1 \cap F_2) \cup \{e\}) > \operatorname{rk}(F_1 \cap F_2)$ as desired.

(Flats)

¹I owe this formulation to Tim - thanks!

FIGURE 1. Running example for this lecture

Corollary 1.9. For every $A \subseteq E$ there is a unique minimal flat of M, called cl(A) ("closure" of A), that is inclusion-minimal among all flats containing A. The closure satisfies rk(A) = rk(cl(A)).

Proof. Set

(Closure)

$$\mathrm{cl}(A):=\bigcap_{\substack{F \text{ flat of } M\\ A\subseteq F}}F$$

and apply Lemma 1.8 to obtain the first claim.

For the second claim, consider $\overline{A} := \max\{X \supseteq A \mid \operatorname{rk}(X) = \operatorname{rk}(A)\}$. This definition is wellposed: indeed, given X', X'' in the set on the r.h.s., (R3) applied to X' and X'' implies that $\operatorname{rk}(X' \cup X'') = \operatorname{rk}(A)$, hence $X' \cup X''$ is of the set on the r.-h. s. as well, and so the maximum exists. Now, clearly \overline{A} is a flat and $\operatorname{rk}(\overline{A}) = \operatorname{rk}(A)$. Thus $\operatorname{cl}(A) \subseteq \overline{A}$, which implies the middle inequality of the following expression

$$\operatorname{rk}(A) = \operatorname{rk}(\overline{A}) \ge \operatorname{rk}(\operatorname{cl}(A)) \ge \operatorname{rk}(A)$$

where the last inequality holds by monotonicity of the rank function.

Now obviously all above inequalities must be equalities, and the second part of the claim follows. \Box

Theorem 1.10. Let M be a matroid on the ground set [n] with rank function rk. Then

$$P_M = \{ x \in r \cdot \Delta^{(n)} \mid \sum_F x_i \le \operatorname{rk}(F) \text{ for all flats } F \text{ of } M \}$$

Proof.

Claim 1 For every $A \subseteq E$, P_M satisfies the inequality

$$\sum_{i \in A} x_i \le \operatorname{rk}(A). \tag{1}$$

Moreover, the inequality is satisfied with equality for at least one vertex of P_M . *Proof.* We prove that every vertex of P_M satisfies (1). Let B be a basis of M and consider the associated vertex of P_M given by $v := e_B$. Then, $\sum_{i \in A} v_i = |B \cap A|$, and $B \cap A$ is independent. The maximum size of an independent subset of A is, by definition, $\operatorname{rk}(A)$, whence v satisfies (1). If we pick any maximal independent set $I \subseteq A$ and extend I to a basis B of M^2 , we have $\sum_{i \in A} (e_B)_i = |B \cap A| = |I| = \operatorname{rk}(A)$, thus the vertex e_B satisfies Equation 1 with equality.

Claim 2 Every facet Q of P_M that intersects the interior of $r \cdot \Delta$ can be defined by an inequality of the form

$$\sum_{i \in A} x_i \le \operatorname{rk}(A)$$

for some $A \subseteq E$.

Proof. The claim is void, hence trivially true, in case dim $P_M \leq 1$. In that case the facets of P_M are its vertices, and those all lie on the boundary of the simplex $r \cdot \Delta$. Assume then dim $P_M \geq 2$.

First, we prove that we can find a normal vector to Q with all entries either equal to 0 or 1. A vector is normal to Q if and only if it is normal to the direction of every edge of Q. Now, the edges of Q are edges of P_M and so they have the direction $e_i - e_j$ for some $i, j \in [n]$. Consider now on [n] the equivalence relation defined as the transitive closure of $i \sim_Q j$ if Q has an edge in direction $\pm (e_i - e_j)$. Let X be an equivalence class of \sim_Q with |X| > 1. Such an A exists because Q has at least one edge (since dim $Q = \dim P_M - 1 \geq 1$). Pick a vertex v of Q. Since dim $P_M > \dim Q$ and $P_M \subseteq C(P_m, v)$, there must be an edge of P_M that does not lie in aff(Q). Letting $e_k - e_l$ be the direction of this edge, we must have $k \not\sim_Q l$ (since $i \sim_Q j$ implies that aff(Q) contains an affine line in direction $e_i - e_j$). Thus, up to relabeling k and l we can assume that the equivalence class $[l]_{\sim_Q}$ is disjoint from X. Let then

$$A := X \cup [k]_{\sim_Q}, \qquad a := e_A.$$

This vector is orthogonal to every edge of Q (since $a_i = a_j$ whenever $i \sim_Q j$), but not to every edge of P_M (because $a_k \neq a_l$). This means that the linear form $\sum_{i \in A} x_i$ is constant on Q-say with value b-but not on P_M . In particular, since Q is a facet of the polytope P_M we know that the facet Q is defined either by $\sum_{i \in A} x_i \geq b$ or $\sum_{i \in A} x_i \leq b$. If the former case arises, we can use the fact that P_M lies in the affine hyperplane $\sum_{i \in E} x_i = r$ and substract r on both sides of the inequality, obtaining $-\sum_{i \in E \setminus A} x_i \geq b - r$, i.e., $\sum_{i \in E \setminus A} x_i \leq r - b$. In any case (i.e., up to switching A with $E \setminus A$ and b with r - b) there is a subset $A \subseteq E$

In any case (i.e., up to switching A with $E \setminus A$ and b with r-b) there is a subset $A \subseteq E$ and a number $b \in \mathbb{R}$ such that $\sum_{i \in A} x_i \leq b$ is an inequality defining the facet Q. Now by Claim 1 we know that it must be $b = \operatorname{rk}(A)$.

²This is possible by repeated application of $(\mathcal{I}3)$.

Illustrative example. Consider the example in Figure 1 and let Q be the "top horizontal" triangular facet (i.e., with vertices 13, 14, 12). If we want to determine a defining inequality for Q following the method of the proof of Claim 2, we first look at the equivalence relation \sim_Q which, in this case, has equivalence classes $\{1\}, \{2, 3, 4\}$. We would choose $X = \{2, 3, 4\}$. We'd then look at the direction of an edge exiting Q, say the edge between 12 and 24 with direction $e_4 - e_1$, hence k = 4, l = 1 so that $[l]_{\sim_Q} = \{1\}$ is disjoint from X. Now, in this case $[k]_{\sim_Q} = [4]_{\sim_Q} = X$, therefore $a = e_X = e_A = (0, 1, 1, 1)$. Now $\sum_{i \in A} x_i = x_2 + x_3 + x_4$ has value 1 on every vertex of Q, and value 2 on other vertices of P_M , thus we obtain the facet-defining inequality is $x_2 + x_3 + x_4 \ge 1$. This is not yet of the desired form. We substract $x_1 + x_2 + x_3 + x_4 = 2 = r$ on both sides and we obtain $-x_1 \ge -1$, i.e., $x_1 \le 1$, which is now of the desired form.

Claim 3 For every $A \subseteq E$ and every $x \in r \cdot \Delta$, the inequality $\sum_{i \in cl(A)} x_i \leq rk(cl(A))$ implies $\sum_{i \in A} x_i \leq rk(A)$.

 $\overline{Proof.}$ In fact,

$$\sum_{i \in A} x_i \le \sum_{i \in \operatorname{cl}(A)} x_i \le \operatorname{rk}(\operatorname{cl}(A)) = \operatorname{rk}(A).$$

The first inequality because $A \subseteq cl(A)$, the last equality by the second claim in Corollary 1.9.

Now, by Claims 1 and 2 the Theorem's claimed equality holds without restriction on F, and Claim 3 shows that it is possible to restrict F to be a flat.

2. Minors, matroid connectivity and faces of P_M

2.1. Connectivity and dimension. Let M be a matroid on the ground set E. Define a relation on E via

 $e \sim_M f \Leftrightarrow$ either e = f, or there are bases $B_1, B_2 \in \mathcal{B}(M)$ with $B_2 = (B_1 \setminus \{e\}) \cup \{f\}$.

Lemma 2.1. Let M be a matroid on the ground set E. Then, for all $e, f \in E$:

 $e \sim_M f \Leftrightarrow$ either e = f, or $\{e, f\} \subseteq C$ for some circuit $C \in \mathcal{C}(M)$.

In particular, \sim_M is an equivalence relation.

Proof. Consider two elements $e, f \in E, e \neq f$.

If $\{e, f\} \subseteq C$ for some circuit C, the set $C \setminus \{f\}$ is independent and can be completed to a basis B_1 of M not containing f. Now let $B_2 := B_1 \setminus \{e\} \cup \{f\}$. If there is any circuit $C' \subseteq B_2$, then it must contain f (otherwise $C' \subseteq B_1$, contradicting independence of B_1). Now (C3) applied to C, C' and f would give a circuit fully contained in $(C \cup C') \setminus \{f\} \subseteq B_1$, a contradiction. Thus, B_2 is independent and, since $|B_1| = |B_2|$, it is a basis.

On the other hand, if there are bases $B_1, B_2 \in \mathcal{B}(M)$ with $B_2 = B_1 \setminus \{e\} \cup \{f\}$, then in particular $B_1 \cup \{f\}$ is dependent, and there is a circuit $C \subseteq B_1 \cup \{f\}$ with $f \in C$. If $e \notin C$, then $C \subseteq B_2$, a contradiction. Therefore $\{e, f\} \subseteq C$ as desired.

That \sim_M is an equivalence relation follows from its formulation in terms of circuits by (C3). \Box

c(M) (connectivity)

Definition 2.2. The equivalence classes of \sim_M are called *connected components* of M. The *connectivity* of the matroid M is the number c(M) of equivalence classes of \sim_M . We call M *connected* if c(M) = 1, disconnected otherwise.

Remark 2.3.

(1) Since equivalence classes are always nonempty, for the empty matroid $M = (\emptyset, \{\emptyset\})$ we have c(M) = 0, thus the empty matroid is disconnected according to Definition 2.2.

(2) It is important to notice that the notion of connectivity for matroids is *not* a generalization of the notion of connectivity for graphs (rather, if G is a graph, connectivity of M(G) has to do with "2-connectedness" of G, see §4.1 in Oxley's book). Can you find a connected graph G such that M(G) is disconnected as a matroid?

The notion of connectivity is directly related to the dimension of the matroid polytope.

Proposition 2.4. Let M be a matroid on the ground set [n]. Then

$$\dim P_M = n - c(M)$$

Proof. Lemma 2.1 shows that, for any $i \neq j$, $i \simeq_M j$ if and only if there are vertices e_{B_1} and e_{B_2} of P_M that are connected by a segment in the direction of $e_i - e_j$. In particular, the linear space in \mathbb{R}^n that is parallel to the affine span of P_M is generated by

$$S := \{e_i - e_j \mid i \sim_M j\} = \biguplus_{K \in E/\sim_M} \underbrace{\{e_i - e_j \mid i, j \in K\}}_{=:S_K}$$

where K runs over all connected components of M. Now the dimension of P_M is the (column-)rank of the matrix N whose columns are the elements of S. If we number $K_1, \ldots, K_{c(M)}$ the connected components of M and rearrange the coordinate labels so that elements of K_h come before elements of K_k whenever h < k, the matrix N has the block-diagonal form

$$N = \begin{pmatrix} N_{1} & 0 & 0 & 0 \\ \hline 0 & N_{2} & 0 & 0 \\ \hline 0 & 0 & \ddots & 0 \\ \hline 0 & 0 & 0 & N_{c(\pi)} \\ \hline S_{K_{1}} & \cdots & S_{K_{c(n)}} \end{pmatrix}$$

Where, up to permuting and negating columns, the block N_k can be written

$$N_{k} = \begin{cases} 1 & 1 & 1 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 &$$

and has thus rank $|K_k| - 1$. It follows that the rank of N, and hence the dimension of P_M , equals $\sum_k (|K_k| - 1) = n - c(M)$.

2.2. Direct sums and cartesian products.

Lemma 2.5. Let $M_1 = (E_1, \mathcal{I}_1)$, $M_2 = (E_2, \mathcal{I}_2)$ be two matroids given in terms of independent sets and with disjoint ground sets $(E_1 \cap E_2 = \emptyset)$. Then

$$\mathcal{I}_1 \oplus \mathcal{I}_2 := \{ I_1 \cup I_2 \mid I_1 \in \mathcal{I}_1, I_2 \in \mathcal{I}_2 \}$$

is the family of independent sets of a matroid on $E_1 \uplus E_2$.

Proof. Exercise (see Worksheet 2).

Direct sum

Definition 2.6. Let $M_1 = (E_1, \mathcal{I}_1)$, $M_2 = (E_2, \mathcal{I}_2)$ be as in Lemma 2.5. The matroid $M_1 \oplus M_2 := (E_1 \oplus E_2, \mathcal{I}_1 \oplus \mathcal{I}_2)$ is called the *direct sum* of M_1 and M_2 .

Remark 2.7. A matroid is disconnected (in the sense of $\S2.1$) if and only if it can be written as a direct sum of two nonempty matroids. See Worksheet 2 for a precise statement.

Corollary 2.8. Let M_1 , M_2 be matroids on disjoint ground sets. Then

$$\mathcal{B}(M_1 \oplus M_2) = \{B_1 \uplus B_2 \mid B_1 \in \mathcal{B}(M_1), B_2 \in \mathcal{B}(M_2)\}.$$

Proposition 2.9. Let M_1 , M_2 be matroids on disjoint ground sets. Then

$$P_{M_1 \oplus M_2} = P_{M_1} \times P_{M_2}$$

Proof. From our Warm-up we know that $P_{M_1} \times P_{M_2} = \operatorname{conv} \{ e_{B_1} + e_{B_2} \mid B_1 \in \mathcal{B}(M_1), B_2 \in \mathcal{B}(M_2) \}$. Now the claim follows from Corollary 2.8 since $e_{B_1} + e_{B_2} = e_{B_1 \uplus B_2}$.

2.3. Flacets. Our last step will be to eliminate the redundancy from Theorem 1.10, i.e., to understand which flats do indeed define *facets* of P_M that meet the interior of $r \cdot \Delta$. For this, given a matroid M and a subset X of the ground set of M, aside from the already mentioned notion of restriction M[X], we need to define the "contraction" of X in M.

First recall that, if rk(X) = s, the bases of M[X] are

$$\mathcal{B}(M[X]) = \max \mathcal{I}[X] = \{X \cap B \mid B \in \mathcal{B}(M), |X \cap B| = s\}.$$

Now consider the set

$$\mathcal{B}_{/X} := \{ B \setminus X \mid B \in \mathcal{B}(M), |X \cap B| = s \}.$$

We would like to prove that $\mathcal{B}_{/X}$ is the set of bases of a matroid. This we will do in Corollary 2.11, but first a word about duality.

Lemma-Definition 2.10. Let M be a matroid on the ground set E. Then

$$\mathcal{B}^*(M) := \{ E \setminus B \mid B \in \mathcal{B}(M) \}$$

is the set of bases of a matroid on E that is called dual to M, and denoted M^* .

Proof. Consider the following preparatory claim:

Let M be a matroid on the ground set E. Given $B_1, B_2 \in \mathcal{B}(M)$ and $e \in B_2 \setminus B_1$, then there is $f \in B_1 \setminus B_2$ such that $(B_1 \setminus \{f\}) \cup \{e\} \in \mathcal{B}(M)$.

Proof. By maximality of B_1 , the set $B_1 \cup \{e\}$ is dependent and thus contains a circuit C. Necessarily $e \in C$, otherwise $C \subseteq B_1$ and the latter would be dependent. Also, $C \neq \{e\}$, since otherwise B_2 would be dependent. Therefore $C \cap B_1 \neq \emptyset$, so we can choose f in this set and let $B'_1 := B_1 \setminus \{f\} \cup \{e\}$. Now B'_1 is independent: any circuit $C' \subseteq B'_1$ would contain e and, with (C3) applied to C, C' and e, it would lead to the existence of a circuit fully contained in B_1 . Since $|B_1| = |B'_1|$, the claim follows.

Now consider $B_1^*, B_2^* \in \mathcal{B}^*(M)$ and $e \in B_1^* \setminus B_2^*$. By definition, $B_1 = E \setminus B_1^*$ and $B_2 = E \setminus B_2^*$ are bases of M, and we have $e \in B_2 \setminus B_1$. Now by our "preparatory claim" we can find $f \in B_1 \setminus B_2$ so that $B_3 := (B_1 \setminus \{f\}) \cup \{e\}$ is in $\mathcal{B}(M)$. The basis $B_3^* := E \setminus B_3 \in \mathcal{B}^*(M)$ then satisfies $B_3^* = (B_1^* \setminus \{e\}) \cup \{f\}$ and witnesses ($\mathcal{B}2$) for the chosen B_1^*, B_2^*, e . Aziom ($\mathcal{B}1$) is obviously true for $\mathcal{B}^*(M)$, since this set contains the complement of any element of the (nonempty) set $\mathcal{B}(M)$. This concludes the proof.

M/X (Contraction)

Corollary-Definition 2.11. The set $\mathcal{B}_{/X}$ is the set of bases of a matroid that we call M/X, the contraction of X in M.

Proof. This follows directly from Lemma 2.10 because $\mathcal{B}_{/X} = \mathcal{B}^*(M^*[E \setminus X])$.

To see this last fact, notice that the bases of M^* are the sets $E \setminus B$ for B a basis of M; hence the bases of $M^*[E \setminus X]$ are the sets $(E \setminus B) \cap (E \setminus X)$ with maximal possible cardinality, i.e., such

(Dual matroid)

 M^*

that $B \cap X$ has maximal cardinality, this maximal cardinality being $s = \operatorname{rk}(X)$. Therefore, writing X^c and B^c for $E \setminus X$ and $E \setminus B$,

$$\mathcal{B}^*(M^*[E \setminus X]) = \{\underbrace{X^c \setminus (B^c \cap X^c)}_{=X^c \setminus B^c = B \setminus X} \mid |B \cap X| = s\}$$

and the claim follows.

Flacet

Definition 2.12. A flat F of a matroid M is called a *flacet* if the inequality $\sum_{i \in F} x_i \leq \operatorname{rk}(F)$ defines a facet of P_M that meets the interior of $r \cdot \Delta$.

Proposition 2.13. Let M be a connected matroid. A flat F is a flacet of M if and only if both M[F] and M/F are connected.

Example 2.14. See Figure 1 for an illustration of this theorem. All three "green" facets are flacets.

Proof of Proposition 2.13. Let F be a flat. The vertices of the face Q of P_M given by $P_M \cap \{\sum_{i \in F} x_i = \operatorname{rk}(F)\}$ are exactly those e_B where $B \in \mathcal{B}(M)$ is such that $|B \cap F| = \operatorname{rk}(F)$. Since F is a flat, these B are exactly (³) the bases of the matroid

$$M_F := M/F \oplus M[F].$$

Now, with Proposition 2.9 we can write

$$Q = P_{M_F} = P_{M/F} \times P_{M[F]}$$

and the dimension of Q can be computed as dim $Q = \dim(P_{M/F}) + \dim(P_{M[F]}) = |E \setminus F| - c(M/F) + |F| - c(M[F]).$

Now Q is a facet if and only if dim $Q = \dim P_M - 1 = n - 2$ (recall that M is connected). This is the case exactly when c(M/F) = c(M[F]) = 1.

³The inclusion $\{B \in \mathcal{B}(M) \mid |B \cap F| = \operatorname{rk}(F)\} \subseteq \mathcal{B}(M/F \oplus M[F])$ is clear. For the reverse inclusion consider any basis $B_1 \oplus B_2$ of $M/F \oplus M[F]$ and notice that if it not a basis of M then there must be some $e \in B_1 \subseteq E \setminus F$ such that $\{e\} \cup B_2$ is dependent, i.e., $\operatorname{rk}(\{e\} \cup B_2) = |B_2| = \operatorname{rk}(F)$. Now (R3) gives $\operatorname{rk}(B_2 \cup \{e\}) + \operatorname{rk}(F) \geq \operatorname{rk}(B_2) + \operatorname{rk}(F \cup \{e\})$ and so we conclude $\operatorname{rk}(F) \geq \operatorname{rk}(F \cup \{e\})$, which implies $\operatorname{rk}(F) = \operatorname{rk}(F \cup \{e\})$ via (R2), a contradiction to F being a flat.