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NOTES FOR LECTURE 2

This Lecture Notes follow the treatment of this subject given in the papers by Gel’fand-Goresky-
MacPherson-Serganova and by Feichtner-Sturmfels that are includer in the literature folder.

1. Matroid polytopes

1.1. Basic definitions. Let n ∈ N. The standard-simplex ∆ in Rn is the convex hull of the
standard basis vectors,

∆ := conv{ei | i = 1, . . . , n} ⊆ Rn.

We write ∆(n) if specification is needed. Notice that every edge of ∆ is parallel to some vector of
the form ei − ej for i, j ∈ [n].

Recall that we write [n] := {1, . . . , n} and, for r, n ∈ N,
(
n
r

)
:= {A ⊆ [n] | |A| = r}.

Moreover, for any subset A ⊆ [n] we write

eA :=
∑
i∈A

ei ∈ Rn

for the sum of the basis vectors indexed by elements of A.

Definition 1.1. Given any family X ⊆ 2[n], we consider then the polytope

PX := conv{eX | X ∈ X}.

1.2. The main theorem.

Theorem 1.2 (Gel’fand-Goresky-Macpherson-Serganova). A nonempty family B ⊆
(
n
r

)
is the set

of bases of a rank r matroid on the ground set [n] if and only if all edges of PB are parallel to edges
of ∆.

Remark 1.3. Often the statement of Theorem 1.2 is formulated in terms of a subset of vertices of
the “hypersimplex” P(n

r)
rather than “a nonempty family B ⊆

(
n
r

)
”. The equivalence is obvious.

We comment on one aspect of the alternative formulation that is not immediatly apparent in
ours: if B ⊆

(
n
r

)
, then the set of vertices of PB is exactly {eB | B ∈ B}. In order to see this, given

X ∈
(
n
r

)
consider the linear functional `X : Rn → R, x 7→ 〈eX | x〉. Then, `X(eY ) ≤ |X| for all

Y ∈
(
n
r

)
, with equality if and only if X = Y . In particular, eX cannot be a convex combination of

any subset of the eY , Y ∈
(
n
r

)
\ {X}.

Definition 1.4.PM

(Matroid

polytope)

Given a matroid M we will write PM for PB(M). Every such polytope is called
a matroid polytope.

Proof of Theorem 1.2. We prove only one direction, and leave the other as a reading assignment,
from the original paper (§4.3 of the paper by Gel’fand, Goresky, MacPherson and Serganova,
available in the literature folder).

Assume then that every edge of the nonempty polytope PB is parallel to a vector of the form
ei − ej for some i, j ∈ [n]. We have to prove that B satisfies axiom (B2). Let then B1, B2 ∈ B. Up

1
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to re-ordering the coordinates we can assume that

eB1 = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0)

eB2 = (0, . . . , 0︸ ︷︷ ︸
A-coord.

, 1, . . . , 1︸ ︷︷ ︸
B-coord.

, 1, . . . , 1︸ ︷︷ ︸
C-coord.

, 0, . . . , 0︸ ︷︷ ︸
D-coord.

)

For some partition [n] = A ]B ] C ]D.
Now, by convexity of PB the segment between eB1

and eB2
is fully contained in PB, which is

contained in the vertex cone C(PB, v) of PB at v := eB1
. The vertex cone was treated in the

Warm-up to this lecture, where it was also explained that this cone is generated by the directions
of the edges emanating from v, and is based at v. In particular,

eB2
− eB1

= (−1, . . . ,−1; 1, . . . , 1; 0, . . . , 0; 0, . . . , 0) =
∑

conv{v,w} is
edge of PB

λw(w − v) (†)

with all λw ∈ R≥0. Now by assumption for every vertex w of PB appearing in (†) the vector w − v
is a positive multiple of ei − ej for some i, j ∈ [n], i.e., in coordinates i and j we have wi > vi
and wj < vj

1. Now both v and w are 0 − 1 vectors (as is the case for every vertex of PB), thus
necessarily vi = (eB1)i = 0 and vj = (eB1)j = 1. This means that i ∈ B ∪D and j ∈ A ∪ C.

In particular, on the r.h.s of (†) there is never a negative contribution to coordinates in D. This
implies that, if λw > 0, then i 6∈ D, since otherwise we’d have a positive contribution of ei to a
D-coordinate that can’t be cancelled by other terms. Analogously, j 6∈ C whenever λw > 0.

In summary, for every vertex w adjacent to v such that λw > 0 in (†), if ei − ej is the direction
of the edge between w and v then i ∈ B and j ∈ A.

Now we return to checking (B2). Let b ∈ B1 \ B2 and recall that in fact B1 \ B2 = A. Then
(eB1

−eB2
)b = −1, and so there must be w with λw > 0 in (†) such that w−v is a positive multiple

of eb′−eb for some b′ ∈ B = B2 \B1. Since w and v are vertices of PB ⊆ {x | 0 ≤ |xk| ≤ 1 for all k},
in fact w − v = eb′ − eb. Thus, for the B′ ∈ B such that w = eB′ we have

B′ = (B1 \ {b}) ∪ {b′},
and the proof is complete.

�

Some corollaries follow directly from Theorem 1.2.

Corollary 1.5. Every face of a matroid polytope is a matroid polytope.

Corollary 1.6. Every matroid polytope is a subset of the simplex r ·∆, where r is the rank of the
matroid and ∆ = ∆(n), with n the cardinality of the ground set. Notice that r ·∆ is described by
x1 ≥ 0, . . . , xn ≥ 0 and

∑
i xi = r.

1.3. Flats and flacets. Our next goal is to determine which inequalities determine a matroid
polytope as a subset of r ·∆. To this end we need a definition.

Definition 1.7.(Flats) Let M be a matroid with rank function rk on the ground set E. A subset F ⊆ E
is called a flat of M if rk(F ∪ {e}) > rk(F ) for all e ∈ E \ F .

Lemma 1.8. Let F1, F2 be flats of M . Then, F1 ∩ F2 is a flat of M .

Proof. Let e ∈ E \ (F1 ∩ F2). In particular, there is j ∈ {1, 2} for which e 6∈ Fj . Then,

rk(Fj) + rk((F1 ∩ F2) ∪ {e}) ≥ rk(F1 ∩ F2) + rk(Fj ∪ {e}).
Since Fj is a flat, rk(Fj) < rk(Fj ∪ {e}), and the inequality above implies rk((F1 ∩ F2) ∪ {e}) >
rk(F1 ∩ F2) as desired. �

1I owe this formulation to Tim - thanks!
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Figure 1. Running example for this lecture

Corollary 1.9.(Closure) For every A ⊆ E there is a unique minimal flat of M , called cl(A) (“closure” of
A), that is inclusion-minimal among all flats containing A. The closure satisfies rk(A) = rk(cl(A)).

Proof. Set

cl(A) :=
⋂

F flat of M
A⊆F

F

and apply Lemma 1.8 to obtain the first claim.
For the second claim, consider A := max{X ⊇ A | rk(X) = rk(A)}. This definition is well-

posed: indeed, given X ′, X ′′ in the set on the r.h.s., (R3) applied to X ′ and X ′′ implies that
rk(X ′ ∪ X ′′) = rk(A), hence X ′ ∪ X ′′ is of the set on the r.-h. s. as well, and so the maximum
exists. Now, clearly A is a flat and rk(A) = rk(A). Thus cl(A) ⊆ A, which implies the middle
inequality of the following expression

rk(A) = rk(A) ≥ rk(cl(A)) ≥ rk(A)

where the last inequality holds by monotonicity of the rank function.
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Now obviously all above inequalities must be equalities, and the second part of the claim follows.
�

Theorem 1.10. Let M be a matroid on the ground set [n] with rank function rk. Then

PM = {x ∈ r ·∆(n) |
∑
F

xi ≤ rk(F ) for all flats F of M}

Proof.

Claim 1 For every A ⊆ E, PM satisfies the inequality∑
i∈A

xi ≤ rk(A). (1)

Moreover, the inequality is satisfied with equality for at least one vertex of PM .
Proof. We prove that every vertex of PM satisfies (1). Let B be a basis of M and consider
the associated vertex of PM given by v := eB . Then,

∑
i∈A vi = |B ∩ A|, and B ∩ A is

independent. The maximum size of an independent subset of A is, by definition, rk(A),
whence v satisfies (1). If we pick any maximal independent set I ⊆ A and extend I to a
basis B of M2, we have

∑
i∈A(eB)i = |B ∩ A| = |I| = rk(A), thus the vertex eB satisfies

Equation 1 with equality.

Claim 2 Every facet Q of PM that intersects the interior of r ·∆ can be defined by an inequality of
the form ∑

i∈A
xi ≤ rk(A)

for some A ⊆ E .
Proof. The claim is void, hence trivially true, in case dimPM ≤ 1. In that case the facets
of PM are its vertices, and those all lie on the boundary of the simplex r ·∆. Assume then
dimPM ≥ 2.

First, we prove that we can find a normal vector to Q with all entries either equal to 0
or 1. A vector is normal to Q if and only if it is normal to the direction of every edge of
Q. Now, the edges of Q are edges of PM and so they have the direction ei − ej for some
i, j ∈ [n]. Consider now on [n] the equivalence relation defined as the transitive closure of
i ∼Q j if Q has an edge in direction ±(ei − ej). Let X be an equivalence class of ∼Q with
|X| > 1. Such an A exists because Q has at least one edge (since dimQ = dimPM −1 ≥ 1).
Pick a vertex v of Q. Since dimPM > dimQ and PM ⊆ C(Pm, v), there must be an edge of
PM that does not lie in aff(Q). Letting ek − el be the direction of this edge, we must have
k 6∼Q l (since i ∼Q j implies that aff(Q) contains an affine line in direction ei − ej). Thus,
up to relabeling k and l we can assume that the equivalence class [l]∼Q

is disjoint from X.
Let then

A := X ∪ [k]∼Q
, a := eA.

This vector is orthogonal to every edge of Q (since ai = aj whenever i ∼Q j), but not to
every edge of PM (because ak 6= al). This means that the linear form

∑
i∈A xi is constant on

Q - say with value b - but not on PM . In particular, since Q is a facet of the polytope PM we
know that the facet Q is defined either by

∑
i∈A xi ≥ b or

∑
i∈A xi ≤ b. If the former case

arises, we can use the fact that PM lies in the affine hyperplane
∑

i∈E xi = r and substract
r on both sides of the inequality, obtaining −

∑
i∈E\A xi ≥ b− r, i.e.,

∑
i∈E\A xi ≤ r − b.

In any case (i.e., up to switching A with E \A and b with r− b) there is a subset A ⊆ E
and a number b ∈ R such that

∑
i∈A xi ≤ b is an inequality defining the facet Q. Now by

Claim 1 we know that it must be b = rk(A).

2This is possible by repeated application of (I3).
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Illustrative example. Consider the example in Figure 1 and let Q be the ”top horizontal”

triangular facet (i.e., with vertices 13, 14, 12). If we want to determine a defining inequality

for Q following the method of the proof of Claim 2, we first look at the equivalence relation

∼Q which, in this case, has equivalence classes {1}, {2, 3, 4}. We would choose X = {2, 3, 4}.
We’d then look at the direction of an edge exiting Q, say the edge between 12 and 24 with

direction e4 − e1, hence k = 4, l = 1 so that [l]∼Q = {1} is disjoint from X. Now, in this

case [k]∼Q = [4]∼Q = X, therefore a = eX = eA = (0, 1, 1, 1). Now
∑

i∈A xi = x2 + x3 + x4

has value 1 on every vertex of Q, and value 2 on other vertices of PM , thus we obtain

the facet-defining inequality is x2 + x3 + x4 ≥ 1. This is not yet of the desired form. We

substract x1 + x2 + x3 + x4 = 2 = r on both sides and we obtain −x1 ≥ −1, i.e., x1 ≤ 1,

which is now of the desired form.

Claim 3 For every A ⊆ E and every x ∈ r · ∆, the inequality
∑

i∈cl(A) xi ≤ rk(cl(A)) implies∑
i∈A xi ≤ rk(A).

Proof. In fact, ∑
i∈A

xi ≤
∑

i∈cl(A)

xi ≤ rk(cl(A)) = rk(A).

The first inequality because A ⊆ cl(A), the last equality by the second claim in Corollary
1.9.

Now, by Claims 1 and 2 the Theorem’s claimed equality holds without restriction on F , and
Claim 3 shows that it is possible to restrict F to be a flat.

�

2. Minors, matroid connectivity and faces of PM

2.1. Connectivity and dimension. Let M be a matroid on the ground set E. Define a relation
on E via

e ∼M f ⇔ either e = f, or there are bases B1, B2 ∈ B(M) with B2 = (B1 \ {e}) ∪ {f}.

Lemma 2.1. Let M be a matroid on the ground set E. Then, for all e, f ∈ E:

e ∼M f ⇔ either e = f, or {e, f} ⊆ C for some circuit C ∈ C(M).

In particular, ∼M is an equivalence relation.

Proof. Consider two elements e, f ∈ E, e 6= f .
If {e, f} ⊆ C for some circuit C, the set C \ {f} is independent and can be completed to a basis

B1 of M not containing f . Now let B2 := B1 \ {e} ∪ {f}. If there is any circuit C ′ ⊆ B2, then it
must contain f (otherwise C ′ ⊆ B1, contradicting independence of B1). Now (C3) applied to C,
C ′ and f would give a circuit fully contained in (C ∪ C ′) \ {f} ⊆ B1, a contradiction. Thus, B2 is
independent and, since |B1| = |B2|, it is a basis.

On the other hand, if there are bases B1, B2 ∈ B(M) with B2 = B1 \{e}∪{f}, then in particular
B1 ∪ {f} is dependent, and there is a circuit C ⊆ B1 ∪ {f} with f ∈ C. If e 6∈ C, then C ⊆ B2, a
contradiction. Therefore {e, f} ⊆ C as desired.

That ∼M is an equivalence relation follows from its formulation in terms of circuits by (C3). �

Definition 2.2.c(M)

(connectivity)

The equivalence classes of ∼M are called connected components of M . The
connectivity of the matroid M is the number c(M) of equivalence classes of ∼M . We call M
connected if c(M) = 1, disconnected otherwise.

Remark 2.3.

(1) Since equivalence classes are always nonempty, for the empty matroid M = (∅, {∅}) we have
c(M) = 0, thus the empty matroid is disconnected according to Definition 2.2.
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(2) It is important to notice that the notion of connectivity for matroids is not a generalization
of the notion of connectivity for graphs (rather, if G is a graph, connectivity of M(G) has
to do with “2-connectedness” of G, see §4.1 in Oxley’s book). Can you find a connected
graph G such that M(G) is disconnected as a matroid?

The notion of connectivity is directly related to the dimension of the matroid polytope.

Proposition 2.4. Let M be a matroid on the ground set [n]. Then

dimPM = n− c(M)

Proof. Lemma 2.1 shows that, for any i 6= j, i 'M j if and only if there are vertices eB1
and eB2

of
PM that are connected by a segment in the direction of ei − ej . In particular, the linear space in
Rn that is parallel to the affine span of PM is generated by

S := {ei − ej | i ∼M j} =
⊎

K∈E/∼M

{ei − ej | i, j ∈ K}︸ ︷︷ ︸
=:SK

where K runs over all connected components of M . Now the dimension of PM is the (column-)rank
of the matrix N whose columns are the elements of S. If we number K1, . . . ,Kc(M) the connected
components of M and rearrange the coordinate labels so that elements of Kh come before elements
of Kk whenever h < k, the matrix N has the block-diagonal form

N

" it:÷÷i÷⇒
N

I. -
-
-
-

,

ni. :÷÷÷÷.

* I
Where, up to permuting and negating columns, the block Nk can be written

N

" it:÷÷i÷⇒
N

I. -
-
-
-

,

ni. :÷÷÷÷.

* I
and has thus rank |Kk| − 1. It follows that the rank of N , and hence the dimension of PM , equals∑

k(|Kk| − 1) = n− c(M).
�

2.2. Direct sums and cartesian products.

Lemma 2.5. Let M1 = (E1, I1), M2 = (E2, I2) be two matroids given in terms of independent sets
and with disjoint ground sets (E1 ∩ E2 = ∅). Then

I1 ⊕ I2 := {I1 ∪ I2 | I1 ∈ I1, I2 ∈ I2}
is the family of independent sets of a matroid on E1 ] E2.

Proof. Exercise (see Worksheet 2). �

Definition 2.6.Direct sum Let M1 = (E1, I1), M2 = (E2, I2) be as in Lemma 2.5. The matroid M1⊕M2 :=
(E1 ] E2, I1 ⊕ I2) is called the direct sum of M1 and M2.
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Remark 2.7. A matroid is disconnected (in the sense of §2.1) if and only if it can be written as a
direct sum of two nonempty matroids. See Worksheet 2 for a precise statement.

Corollary 2.8. Let M1, M2 be matroids on disjoint ground sets. Then

B(M1 ⊕M2) = {B1 ]B2 | B1 ∈ B(M1), B2 ∈ B(M2)}.

Proposition 2.9. Let M1, M2 be matroids on disjoint ground sets. Then

PM1⊕M2 = PM1 × PM2

Proof. From our Warm-up we know that PM1
×PM2

= conv{eB1
+eB2

| B1 ∈ B(M1), B2 ∈ B(M2)}.
Now the claim follows from Corollary 2.8 since eB1 + eB2 = eB1]B2 . �

2.3. Flacets. Our last step will be to eliminate the redundancy from Theorem 1.10, i.e., to un-
derstand which flats do indeed define facets of PM that meet the interior of r ·∆. For this, given
a matroid M and a subset X of the ground set of M , aside from the already mentioned notion of
restriction M [X], we need to define the “contraction” of X in M .

First recall that, if rk(X) = s, the bases of M [X] are

B(M [X]) = max I[X] = {X ∩B | B ∈ B(M), |X ∩B| = s}.

Now consider the set

B/X := {B \X | B ∈ B(M), |X ∩B| = s}.

We would like to prove that B/X is the set of bases of a matroid. This we will do in Corollary
2.11, but first a word about duality.

Lemma-Definition 2.10.M∗

(Dual matroid)

Let M be a matroid on the ground set E. Then

B∗(M) := {E \B | B ∈ B(M)}

is the set of bases of a matroid on E that is called dual to M , and denoted M∗.

Proof. Consider the following preparatory claim:

Let M be a matroid on the ground set E. Given B1, B2 ∈ B(M) and e ∈ B2 \ B1, then
there is f ∈ B1 \B2 such that (B1 \ {f}) ∪ {e} ∈ B(M).
Proof. By maximality of B1, the set B1 ∪ {e} is dependent and thus contains a circuit C.
Necessarily e ∈ C, otherwise C ⊆ B1 and the latter would be dependent. Also, C 6= {e},
since otherwise B2 would be dependent. Therefore C ∩B1 6= ∅, so we can choose f in this
set and let B′1 := B1 \ {f} ∪ {e}. Now B′1 is independent: any circuit C ′ ⊆ B′1 would
contain e and, with (C3) applied to C, C ′ and e, it would lead to the existence of a circuit
fully contained in B1. Since |B1| = |B′1|, the claim follows.

Now consider B∗1 , B
∗
2 ∈ B∗(M) and e ∈ B∗1 \ B∗2 . By definition, B1 = E \ B∗1 and B2 = E \ B∗2

are bases of M , and we have e ∈ B2 \B1. Now by our “preparatory claim” we can find f ∈ B1 \B2

so that B3 := (B1 \ {f}) ∪ {e} is in B(M). The basis B∗3 := E \ B3 ∈ B∗(M) then satisfies
B∗3 = (B∗1 \{e})∪{f} and witnesses (B2) for the chosen B∗1 , B

∗
2 , e. Aziom (B1) is obviously true for

B∗(M), since this set contains the complement of any element of the (nonempty) set B(M). This
concludes the proof. �

Corollary-Definition 2.11.M/X

(Contraction)

The set B/X is the set of bases of a matroid that we call M/X, the
contraction of X in M .

Proof. This follows directly from Lemma 2.10 because B/X = B∗(M∗[E \X]).
To see this last fact, notice that the bases of M∗ are the sets E \ B for B a basis of M ; hence

the bases of M∗[E \X] are the sets (E \B) ∩ (E \X) with maximal possible cardinality, i.e., such
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that B ∩X has maximal cardinality, this maximal cardinality being s = rk(X). Therefore, writing
Xc and Bc for E \X and E \B,

B∗(M∗[E \X]) = {Xc \ (Bc ∩Xc)︸ ︷︷ ︸
=Xc\Bc=B\X

| |B ∩X| = s}

and the claim follows. �

Definition 2.12.Flacet A flat F of a matroid M is called a flacet if the inequality
∑

i∈F xi ≤ rk(F )
defines a facet of PM that meets the interior of r ·∆.

Proposition 2.13. Let M be a connected matroid. A flat F is a flacet of M if and only if both
M [F ] and M/F are connected.

Example 2.14. See Figure 1 for an illustration of this theorem. All three ”green” facets are flacets.

Proof of Proposition 2.13. Let F be a flat. The vertices of the face Q of PM given by PM ∩
{
∑

i∈F xi = rk(F )} are exactly those eB where B ∈ B(M) is such that |B ∩ F | = rk(F ). Since F

is a flat, these B are exactly (3) the bases of the matroid

MF := M/F ⊕M [F ].

Now, with Proposition 2.9 we can write

Q = PMF
= PM/F × PM [F ]

and the dimension of Q can be computed as dimQ = dim(PM/F )+dim(PM [F ]) = |E\F |−c(M/F )+
|F | − c(M [F ]).

Now Q is a facet if and only if dimQ = dimPM − 1 = n− 2 (recall that M is connected). This
is the case exactly when c(M/F ) = c(M [F ]) = 1. �

3The inclusion {B ∈ B(M) | |B ∩ F | = rk(F )} ⊆ B(M/F ⊕M [F ]) is clear. For the reverse inclusion consider any
basis B1]B2 of M/F ⊕M [F ] and notice that if it not a basis of M then there must be some e ∈ B1 ⊆ E\F such that
{e}∪B2 is dependent, i.e., rk({e}∪B2) = |B2| = rk(F ). Now (R3) gives rk(B2∪{e})+rk(F ) ≥ rk(B2)+rk(F ∪{e})
and so we conclude rk(F ) ≥ rk(F ∪ {e}), which implies rk(F ) = rk(F ∪ {e}) via (R2), a contradiction to F being a

flat.


