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NOTES FOR LECTURE 1

These are lecture notes for our first ”in-person” lecture. They follow largely the beginning of
Oxley’s book. Comments and corrections are welcome!

1. Independent sets

Definition 1.1. A matroid M is a pair (E, I) where E is a finite set and I ⊆ 2E is such that

(I1) ∅ ∈ I
(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) For any I1, I2 ∈ I with |I1| < |I2|, there is an element e ∈ I2 \ I1 such that I1 ∪ {e} ∈ I.

Two matroids M = (E, I) and M ′ = (E′, I ′) are isomorphic, written M ' M ′ if there is a
bijection f : E → E′ such that, for all I ⊆ E, I ∈ I if and only if f(I) ∈ I ′.

Remark-Definition 1.2. Let M = (E, I) be a matroid. Given X ⊆ E, let I[X] := {I∩X | I ∈ I}.
Then I[X] satisfies (I1-3). The matroid M [X] := (X, I[X]) is called the “restriction” of M to X.

We point out some terminology:

• Members of I are called “independent sets” of M . Any A ⊆ E, A 6∈ I, is called dependent.

• E is called the ground set of I.

• Write I(M), E(M) if specification is needed.

Example-Definition 1.3.Un,r

Uniform

matroid

Let n, r ∈ N with n ≥ r. Recall that we write [n] as a shorthand for
the set {1, . . . , n}, where we set [0] = ∅.

The set In,r := {I ⊆ [n] | |I| ≤ r} satisfies axioms (I1-3). The matroid

Ur,n := ([n], In,r)

is called uniform matroid of rank r on n elements.

Example-Definition 1.4.Representable

matroids

Let A be an n×m-matrix with entries in a field K and let a1, . . . , am
be its columns. Let then

I(A) := {I ⊆ [m] | (ai)i∈I is linearly independent in Kn}.
Then, our warm-up exercises show that M(A) := ([m], I(A)) is a matroid. Any matroid (isomorphic
to one) of this type is called representable over K.

Example 1.5. Let a1, . . . , a5 denote the column vectors of the 2× 5 matrix with entries in R

A :=

[
1 0 0 1 1
0 1 0 0 1

]
Then the matroid M(A) has ground set [5] and independent sets

I(A) = {∅, 1, 2, 4, 5, 12, 15, 24, 25, 45}
1
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(Notice: here and often in the following, when no confusion is possible, we simplify notation writing
15 for {1, 5} and 2 for {2}, etc.)

The dependent sets of M(A) are then

3, 13, 14, 23, 34, 35 as well as any X ⊆ [5] with |X| ≥ 3.

Notice that I is known as soon as its inclusion-maximal elements are. Analogously, the set of
dependent sets is determined once its inclusion-minimal elements are known.

2. Circuits

Definition 2.1. Given a matroid M = (E, I), let C(M) be the family of minimal dependent sets
of M , i.e.,

C(M) := {C ⊆ E | C 6∈ I, ∀e ∈ C : C \ {e} ∈ I}.
The elements of C(M) are called circuits of M .

Notice, that for every matroid M the set I(M) determines C(M), and vice-versa.

Lemma 2.2. Let M be a matroid and write C for the set of circuits C(M). Then C satisfies the
following three properties.

(C1) ∅ 6∈ C;

(C2) For all C1, C2 ∈ C, C1 ⊆ C2 implies C1 = C2;

(C3) For all C1, C2 ∈ C with C1 6= C2 and every e ∈ C1 ∩ C2 there is C3 ∈ C such that
C3 ⊆ (C1 ∪ C2) \ {e}.

Proof. (C1) follows from (I1). (C2) holds because, by definition of C(M), any nontrivial subset of
a circuit is independent.

We now prove (C3) by way of contradiction. Let C1, C2 be as in (C3) and assume that (C1 ∪
C2) \ {e} does not contain any circuit. Then, (C1 ∪ C2) \ {e} ∈ I(M). Moreover, by (C2) we can
choose an element f ∈ C2 \C1 and, by definition, C2 \ {f} is independent. Then, we can choose an
I ∈ I(M) maximal with the property that C2 \ {f} ⊆ I ⊆ C1 ∪C2. Clearly f 6∈ I and C1 \ I is not
empty (otherwise I would be dependent). Choose g ∈ C1 \ I, and notice that g 6= f .

We can now compute

|I| ≤ |(C1 ∪ C2) \ {f, g}| = |C1 ∪ C2| − 2 < |(C1 ∪ C2) \ {e}|.

Now, (I3) applied to I1 := I and I2 := (C1 ∪C2) \ {e} gives us an e′ ∈ I2 \ I1 with I ′ := I1 ∪{e′} ∈
I(M). We have I1 ( I ′ ⊆ C1 ∪ C2, contradicting the maximality of I = I1. �
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Theorem 2.3. Let E be a finite set and C ⊆ 2E be any collection of subsets of E satisfying (C1),
(C2), (C3). Let

I := {X ⊆ E | C 6⊆ X for all C ∈ C}. (†)
Then, M = (E, I) is a matroid with C(M) = C.

Proof. We first check (I1-3) for I, and then we’ll prove C = C(M).

(I1) The set ∅ is independent by (C1).

(I2) Let I ∈ I and I ′ ⊆ I. If I ′ is not independent, then there is some circuit C ∈ C with
C ⊆ I ′, and so C ⊆ I, which contradicts independence of I. Therefore I ′ ∈ I.

(I3) Let I1, I2 ∈ I with |I1| < |I2|. Consider I3 ∈ I with I3 ⊆ I1 ∪ I2, |I3| > |I1|, and such that
|I1 \ I3| is minimal.

Assume that (I3) fails: then, I1 \ I3 6= ∅, and we can choose and fix an e ∈ I1 \ I3.
Idea: we want to use (C3) in order to “eliminate” e from two circuits.
- For each f ∈ I3 \ I1 let Tf := (I3 ∪ {e}) \ {f}. Since Tf is dependent1, it contains

a circuit Cf ∈ C with: (a) f 6∈ Cf , (b) e ∈ Cf (the latter because otherwise Cf ⊆ I3,

which is impossible because I3 is independent), and (c) Cf ⊆ I3 ∪ {e}.
Moreover, Cf ∩ (I3 \ I1) is not empty (otherwise Cf ⊆ I1, a contradiction), thus we
can choose an element x(f) ∈ Cf ∩ (I3 \ I1).

- Now fix g ∈ I3 \ I1 and let h := x(g) as above. Then, Cf 6= Cg (because h ∈ Cg \Ch),

and e ∈ Cg ∩ Ch.

By (C3), there is C ∈ C with C ⊆ (Cg∪Ch)\{e} ⊆ I3 (the last inclusion by (c) above),
which contradicts independence of I3.

We have so far proved that (E, I) is a matroid, it remains to prove that C = C(M). For this we
turn to the definition: C ∈ C(M) means “C 6∈ I and C \ {x} ∈ I for all x ∈ C”. Expanding the
definition of I from the Theorem’s claim, the former is equivalent to “ C ′ ⊆ C for some C ′ ∈ C,
but C ′ 6⊆ C \ {x} for all x ∈ C”. Equivalently (by (C2)), C ∈ C. �

Corollary 2.4. A C ⊆ 2E is the set of circuits of a matroid if and only if (C1)-(C3).

This leads us to the following Cryptomorphic definition of a matroid: a matroid M “is” any
pair (E, C) where E is a finite set and C ⊆ 2E satisfies (C1-3). C is called the set of circuits of M .

The word “cryptomorphism” is used to indicate the “translation rule” from one axiomatization
to the other:

1In fact, by maximality of I3 , Tf ⊆ I1 ∪ I2 and |I1 \ Tf | < |I1 − I3| imply Tf 6∈ I.
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Matroids
as (E, C)

Matroids
as (E, I)

(E, C)

(E,min⊆(2E \ I))

(E, (†))

(E, I)

Proposition 2.5. Let G be a graph with set of edges E. Set

C(G) := {C ⊆ E | C is the edge set of a circuit in G.}

Then, M(G) := (E, C(G)) is a matroid (called the cycle matroid of G).

Proof. See the warm-up! �

Definition 2.6.Graphic

matroids

Any matroid isomorphic to the cycle matroid of a graph is called graphic.

Example 2.7. Consider the graph in the picture below:

v1

v2

v3
e1 e4

e5

e2

e3

The sets of edge sets of circuits is

C(G) = {{e1, e4}, {e3}, {e1, e2, e5}, {e2, e4, e5}}.

Notice that the assignment ei 7→ i defines an isomorphism with the matroid of Example 1.5. This
matroid is thus graphic as well as representable over R.

Theorem 2.8. Graphic matroids are representable over every field.

Proof. Let G be a graph with vertex set V and edge set E, K any field. For every edge e ∈ E call
(arbitrarily) h(e), t(e) the vertices at the two ends of E (so that h(e) = t(e) if e is a loop).

Consider then the matrix

A(G) ∈ KV×E

defined by letting the e-th column be the vector

ae := 1h(e) − 1t(e)

where 1v denotes the v-th standard basis vector in KV .
Notice that the linear dependency of the ae does not depend on the choice of h and t.

Example 2.9. For the graph in Example 2.7 (choosing h(e1) = t(e4) = v1, h(e5) = h(e2) = v3) we
have

A(G) =

 1 0 0 −1 −1
−1 −1 0 1 0

0 1 0 0 1
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We now claim that M(A(G)) 'M(G).
We have to prove the following:

X ⊆ E is a cycle ⇔ (ae)e∈X is linearly dependent

⇒ If X is a cycle, it contains a circuit C, say e1, . . . , ek. We can assume that h, t are so that

t(ei) = h(ei+1), and t(ek) = h(e1). Then,
∑k

i=1 aei = 0 is a nontrivial linear dependency in
(ae)e∈X .

⇐ Suppose (ae)e∈X is linearly dependent. If ae = 0 for some e, then the loop e is the required
cycle. Otherwise there is a nonempty Y ⊆ X with

∑
e∈Y λeae = 0 with λeae 6= 0 for all

e ∈ Y . In particular, for every component v of this sum, there are f, g ∈ Y , f 6= g, with
(af )v, (ag)v 6= 0. This means that the graph with edge set Y and vertex set h(Y )∪ t(Y ) has
degree at least 2 everywhere and thus, as was proved in the warm-up, contains a circuit.

�

Corollary 2.10. The independent sets of a graphic matroid with graph G are the edge-sets of
cycle-free subgraphs of G.

3. Bases and rank

We have seen that, by the hereditary property, to specify a matroid (E, I) is equivalent to
specifying the (inclusion-)maximal elements of I.

Definition 3.1. Let M = (E, I) be a matroid. Let

B(M) := max
⊇
I = {B ∈ I | I ⊇ B, I ∈ I ⇒ I = B}.

The elements of B(M) are called bases of M .

Lemma 3.2. Let M be a matroid and let B1, B2 ∈ B(M). Then, |B1| = |B2|.

Proof. By way of contradiction: assume |B1| < |B2, then by (I3) there is e ∈ B2 \ B1 with
B1 ∪ {e} ∈ I(M). Since B1 ( B1 ∪ {e}, this contradicts maximality of B1. Thus, |B1| ≥ |B2|. By
symmetry, |B1| ≤ |B2|. �

Definition 3.3. The rank of a matroid M = (E, I) is the cardinality rk(M) = |B| of any basis
B ∈ B(M).

We can assign a rank to every subset of E by setting

rk(X) := rk(M [X]) for every X ⊆ E.

The resulting function rk : 2E 7→ N is called the rank function of M .

There is a cryptomorphic definition of matroids via the rank function, given as follows.

Theorem 3.4. Let E be a finite set. A function rk : 2E → N is the rank function of a matroid on
E if and only if it satisfies the following criteria.

(R1) For all X ⊆ E: rk(X) ≤ |X|.

(R2) For all X ⊆ Y ⊆ E: rk(X) ≤ rk(Y )

(R3) For all X,Y ⊆ E: rk(X) + rk(Y ) ≥ rk(X ∩ Y ) + rk(X ∪ Y ).
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See pages 20 and ff. of Oxley’s book for a proof.

Here we continue by stating two properties of bases of matroids.

Proposition 3.5. Let M be a matroid and let B = B(M) be its set of bases. Then

(B1) B is not empty

(B2) If B1, B2 ∈ B and x ∈ B1 \B2, then there is y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.

Proof. (B1) is immediate from (I1). For (B2) take B1, B2 ∈ B and x ∈ B1 \B2. We split the proof
in two parts.

Existence of y. By Lemma 3.2, |B1\{x}| < |B2|, and thus by (I3) there is y ∈ B2\(B1\{x})
such that (B1 \ {x}) ∪ {y} ∈ I(M).

Maximality of (B1 \ {x}) ∪ {y}. Let B′ ∈ B(M) with

B′ ⊇ (B1 \ {x}) ∪ {y}. (‡)

We compute |B′| = |B| = |(B1 \ {x})∪ {y}| (the last equality since x ∈ B1 and y 6∈ B1),
and with (‡) we conclude B′ = (B1 \ {x}) ∪ {y}.

�

We conclude by proving that, in fact, axioms (I1) and (I2) five yet another cryptomorphic
definition of matroids.

Theorem 3.6. Let E be a finite set, B ⊆ 2E be any collection satisfying (B1) and (B2). Consider

I := {I ⊆ E | I ⊆ B for some B ∈ B}.

Then M = (E, I) is a matroid with B(M) = B.

Proof. If M is a matroid, clearly B is its set of bases. It is then enough to prove that I satisfies
(I1-3).

(I1) for I follows immediately from (B1) for B.

(I2) Let I ∈ I and consider I ′ ⊆ I. By definition there is B ∈ B with I ⊆ B – but then I ′ ⊆ B
as well, and so I ′ ∈ I.

(I3) By way of contradiction, suppose that (I3) fails for I and choose I1, I2 with |I1| < |I2| and
(I1 ∪ {e}) 6∈ I for all e ∈ I2 \ I1.

Among all B1, B2 ∈ B with B1 ⊇ I1 and B2 ⊇ I2 choose a pair so that |B2 \ (I2 ∪ B1)|
is minimal.

Now we state a few claims about the relationships among the various sets, establishing
the following diagram.
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÷..

(1) I2 \B1 = I2 \ I1 by the choice of I1, I2.

(2) B2 \ (I2 ∪B1) = ∅.
Proof. By way of contradiction choose x ∈ B2 \ (I2 ∪ B1) ⊆ B2. Then (B2) gives a
y ∈ B1 \B2 with (B2 \ {x}) ∪ {y}) ∈ B. But this would imply

|[(B2 \ {x}) ∪ {y}] \ (I2 ∪B1)| < |B2 \ (I2 ∪B2)|
contradicting the choice of B1, B2.

(3) B2 \B1 = I2 \ I1 (by (1) and (2), e.g. after inspecting the diagram above).

(4) B1 \ (I1 ∪B2) = ∅
Proof. By way of contradiction, choose x ∈ B1 \ (I1 ∪ B2). Then (B2) gives an
y ∈ B2 \ B1 with (B1 \ {x}) ∪ {y}) ∈ B. In particular, I1 ∪ {y} ∈ I for some
y ∈ B2 \ B1 = I2 \ I1 the last equality via (3)). This cannot be, since I1, I2 violate
(I3) by assumption.

(5) B1 \ B2 ⊆ I1 \ I2. This is because (4) implies B1 \ B2 = I1 \ B2, and the latter is a
subset of I1 \ I2 by definition.

(6) – The final contradiction!
By Lemma 3.2 we have |B1| = |B2|, whence the equality in the middle of the following
expression:

|I1 \ I2|
(5)

≤ |B1 \B2| = |B2 \B1|
(3)
= |I2 \ I1|.

Now, |I1 \ I2| ≤ |I2 \ I1 implies |I1| ≥ |I2|, a contradiction!.

�


