## NOTES FOR LECTURE 1

These are lecture notes for our first "in-person" lecture. They follow largely the beginning of Oxley's book. Comments and corrections are welcome!

## 1. Independent sets

Definition 1.1. A matroid $M$ is a pair $(E, \mathcal{I})$ where $E$ is a finite set and $\mathcal{I} \subseteq 2^{E}$ is such that
$(\mathcal{I} 1) \emptyset \in \mathcal{I}$
(I2) If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$.
(I) For any $I_{1}, I_{2} \in \mathcal{I}$ with $\left|I_{1}\right|<\left|I_{2}\right|$, there is an element $e \in I_{2} \backslash I_{1}$ such that $I_{1} \cup\{e\} \in \mathcal{I}$.

Two matroids $M=(E, \mathcal{I})$ and $M^{\prime}=\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ are isomorphic, written $M \simeq M^{\prime}$ if there is a bijection $f: E \rightarrow E^{\prime}$ such that, for all $I \subseteq E, I \in \mathcal{I}$ if and only if $f(I) \in \mathcal{I}^{\prime}$.

Remark-Definition 1.2. Let $M=(E, \mathcal{I})$ be a matroid. Given $X \subseteq E$, let $\mathcal{I}[X]:=\{I \cap X \mid I \in \mathcal{I}\}$. Then $\mathcal{I}[X]$ satisfies ( $\mathcal{I} 1-3)$. The matroid $M[X]:=(X, \mathcal{I}[X])$ is called the "restriction" of $M$ to $X$.

We point out some terminology:

- Members of $\mathcal{I}$ are called "independent sets" of $M$. Any $A \subseteq E, A \notin \mathcal{I}$, is called dependent.
- $E$ is called the ground set of $\mathcal{I}$.
- Write $\mathcal{I}(M), E(M)$ if specification is needed.

| $U_{n, r}$ |
| ---: |
| Uniform |
| matroid |

Representable matroids

Example-Definition 1.3. Let $n, r \in \mathbb{N}$ with $n \geq r$. Recall that we write $[n]$ as a shorthand for the set $\{1, \ldots, n\}$, where we set $[0]=\emptyset$.

The set $\mathcal{I}_{n, r}:=\{I \subseteq[n]| | I \mid \leq r\}$ satisfies axioms (İ1-3). The matroid

$$
U_{r, n}:=\left([n], \mathcal{I}_{n, r}\right)
$$

is called uniform matroid of rank $r$ on $n$ elements.
Example-Definition 1.4. Let $A$ be an $n \times m$-matrix with entries in a field $\mathbb{K}$ and let $a_{1}, \ldots, a_{m}$ be its columns. Let then

$$
\mathcal{I}(A):=\left\{I \subseteq[m] \mid\left(a_{i}\right)_{i \in I} \text { is linearly independent in } \mathbb{K}^{n}\right\}
$$

Then, our warm-up exercises show that $M(A):=([m], \mathcal{I}(A))$ is a matroid. Any matroid (isomorphic to one) of this type is called representable over $\mathbb{K}$.

Example 1.5. Let $a_{1}, \ldots, a_{5}$ denote the column vectors of the $2 \times 5$ matrix with entries in $\mathbb{R}$

$$
A:=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Then the matroid $M(A)$ has ground set [5] and independent sets

$$
\mathcal{I}(A)=\{\emptyset, 1,2,4,5,12,15,24,25,45\}
$$

(Notice: here and often in the following, when no confusion is possible, we simplify notation writing 15 for $\{1,5\}$ and 2 for $\{2\}$, etc.)

The dependent sets of $M(A)$ are then

$$
3,13,14,23,34,35 \text { as well as any } X \subseteq[5] \text { with }|X| \geq 3
$$

Notice that $\mathcal{I}$ is known as soon as its inclusion-maximal elements are. Analogously, the set of dependent sets is determined once its inclusion-minimal elements are known.

## 2. Circuits

Definition 2.1. Given a matroid $M=(E, \mathcal{I})$, let $\mathcal{C}(M)$ be the family of minimal dependent sets of $M$, i.e.,

$$
\mathcal{C}(M):=\{C \subseteq E \mid C \notin \mathcal{I}, \forall e \in C: C \backslash\{e\} \in \mathcal{I}\}
$$

The elements of $\mathcal{C}(M)$ are called circuits of $M$.
Notice, that for every matroid $M$ the set $\mathcal{I}(M)$ determines $\mathcal{C}(M)$, and vice-versa.
Lemma 2.2. Let $M$ be a matroid and write $\mathcal{C}$ for the set of circuits $\mathcal{C}(M)$. Then $\mathcal{C}$ satisfies the following three properties.
(C1) $\emptyset \notin \mathcal{C}$;
(C 2) For all $C_{1}, C_{2} \in \mathcal{C}, C_{1} \subseteq C_{2}$ implies $C_{1}=C_{2}$;
(C3) For all $C_{1}, C_{2} \in \mathcal{C}$ with $C_{1} \neq C_{2}$ and every $e \in C_{1} \cap C_{2}$ there is $C_{3} \in \mathcal{C}$ such that $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}$.

Proof. (C1) follows from ( $\mathcal{I} 1)$. (C2) holds because, by definition of $\mathcal{C}(M)$, any nontrivial subset of a circuit is independent.

We now prove (C3) by way of contradiction. Let $C_{1}, C_{2}$ be as in (C3) and assume that $\left(C_{1} \cup\right.$ $\left.C_{2}\right) \backslash\{e\}$ does not contain any circuit. Then, $\left(C_{1} \cup C_{2}\right) \backslash\{e\} \in \mathcal{I}(M)$. Moreover, by (C2) we can choose an element $f \in C_{2} \backslash C_{1}$ and, by definition, $C_{2} \backslash\{f\}$ is independent. Then, we can choose an $I \in \mathcal{I}(M)$ maximal with the property that $C_{2} \backslash\{f\} \subseteq I \subseteq C_{1} \cup C_{2}$. Clearly $f \notin I$ and $C_{1} \backslash I$ is not empty (otherwise $I$ would be dependent). Choose $g \in C_{1} \backslash I$, and notice that $g \neq f$.


We can now compute

$$
|I| \leq\left|\left(C_{1} \cup C_{2}\right) \backslash\{f, g\}\right|=\left|C_{1} \cup C_{2}\right|-2<\left|\left(C_{1} \cup C_{2}\right) \backslash\{e\}\right| .
$$

Now, $(\mathcal{I} 3)$ applied to $I_{1}:=I$ and $I_{2}:=\left(C_{1} \cup C_{2}\right) \backslash\{e\}$ gives us an $e^{\prime} \in I_{2} \backslash I_{1}$ with $I^{\prime}:=I_{1} \cup\left\{e^{\prime}\right\} \in$ $\mathcal{I}(M)$. We have $I_{1} \subsetneq I^{\prime} \subseteq C_{1} \cup C_{2}$, contradicting the maximality of $I=I_{1}$.

Theorem 2.3. Let $E$ be a finite set and $\mathcal{C} \subseteq 2^{E}$ be any collection of subsets of $E$ satisfying (C 1 ), (C2), (C3). Let

$$
\mathcal{I}:=\{X \subseteq E \mid C \nsubseteq X \text { for all } C \in \mathcal{C}\}
$$

Then, $M=(E, \mathcal{I})$ is a matroid with $\mathcal{C}(M)=\mathcal{C}$.
Proof. We first check ( $\mathcal{I} 1-3)$ for $\mathcal{I}$, and then we'll prove $\mathcal{C}=\mathcal{C}(M)$.
$(\mathcal{I} 1)$ The set $\emptyset$ is independent by $(\mathcal{C} 1)$.
(I2) Let $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$. If $I^{\prime}$ is not independent, then there is some circuit $C \in \mathcal{C}$ with $C \subseteq I^{\prime}$, and so $C \subseteq I$, which contradicts independence of $I$. Therefore $I^{\prime} \in \mathcal{I}$.
$(\mathcal{I} 3)$ Let $I_{1}, I_{2} \in \mathcal{I}$ with $\left|I_{1}\right|<\left|I_{2}\right|$. Consider $I_{3} \in \mathcal{I}$ with $I_{3} \subseteq I_{1} \cup I_{2},\left|I_{3}\right|>\left|I_{1}\right|$, and such that $\left|I_{1} \backslash I_{3}\right|$ is minimal.

Assume that $(\mathcal{I} 3)$ fails: then, $I_{1} \backslash I_{3} \neq \emptyset$, and we can choose and fix an $e \in I_{1} \backslash I_{3}$.
Idea: we want to use (C3) in order to "eliminate" e from two circuits.

- For each $f \in I_{3} \backslash I_{1}$ let $T_{f}:=\left(I_{3} \cup\{e\}\right) \backslash\{f\}$. Since $T_{f}$ is dependent ${ }^{1}$, it contains a circuit $C_{f} \in \mathcal{C}$ with: (a) $f \notin C_{f}$, (b) $e \in C_{f}$ (the latter because otherwise $C_{f} \subseteq I_{3}$, which is impossible because $I_{3}$ is independent), and (c) $C_{f} \subseteq I_{3} \cup\{e\}$.
Moreover, $C_{f} \cap\left(I_{3} \backslash I_{1}\right)$ is not empty (otherwise $C_{f} \subseteq \overline{I_{1}}$, a contradiction), thus we can choose an element $x(f) \in C_{f} \cap\left(I_{3} \backslash I_{1}\right)$.

- Now fix $g \in I_{3} \backslash I_{1}$ and let $h:=x(g)$ as above. Then, $\underline{C_{f} \neq C_{g}}$ (because $h \in C_{g} \backslash C_{h}$ ), and $e \in C_{g} \cap C_{h}$.
By $(\overline{\mathcal{C} 3})$, there is $C \in \mathcal{C}$ with $C \subseteq\left(C_{g} \cup C_{h}\right) \backslash\{e\} \subseteq I_{3}$ (the last inclusion by (c) above), which contradicts independence of $I_{3}$.
We have so far proved that $(E, \mathcal{I})$ is a matroid, it remains to prove that $\mathcal{C}=\mathcal{C}(M)$. For this we turn to the definition: $C \in \mathcal{C}(M)$ means " $C \notin \mathcal{I}$ and $C \backslash\{x\} \in \mathcal{I}$ for all $x \in C$ ". Expanding the definition of $\mathcal{I}$ from the Theorem's claim, the former is equivalent to " $C^{\prime} \subseteq C$ for some $C^{\prime} \in \mathcal{C}$, but $C^{\prime} \nsubseteq C \backslash\{x\}$ for all $x \in \mathcal{C}$ ". Equivalently (by $(\mathcal{C} 2)$ ), $C \in \mathcal{C}$.

Corollary 2.4. $A \mathcal{C} \subseteq 2^{E}$ is the set of circuits of a matroid if and only if (C 1$)-(\mathcal{C} 3)$.
This leads us to the following Cryptomorphic definition of a matroid: a matroid $M$ "is" any pair $(E, \mathcal{C})$ where $E$ is a finite set and $\mathcal{C} \subseteq 2^{E}$ satisfies ( $\left.\mathcal{C} 1-3\right) . \mathcal{C}$ is called the set of circuits of $M$.

The word "cryptomorphism" is used to indicate the "translation rule" from one axiomatization to the other:

[^0]

Proposition 2.5. Let $G$ be a graph with set of edges $E$. Set

$$
\mathcal{C}(G):=\{C \subseteq E \mid C \text { is the edge set of a circuit in } G .\}
$$

Then, $M(G):=(E, \mathcal{C}(G))$ is a matroid (called the cycle matroid of $G$ ).
Proof. See the warm-up!

Graphic matroids

Definition 2.6. Any matroid isomorphic to the cycle matroid of a graph is called graphic.
Example 2.7. Consider the graph in the picture below:


The sets of edge sets of circuits is

$$
\mathcal{C}(G)=\left\{\left\{e_{1}, e_{4}\right\},\left\{e_{3}\right\},\left\{e_{1}, e_{2}, e_{5}\right\},\left\{e_{2}, e_{4}, e_{5}\right\}\right\}
$$

Notice that the assignment $e_{i} \mapsto i$ defines an isomorphism with the matroid of Example 1.5. This matroid is thus graphic as well as representable over $\mathbb{R}$.

Theorem 2.8. Graphic matroids are representable over every field.
Proof. Let $G$ be a graph with vertex set $V$ and edge set $E, \mathbb{K}$ any field. For every edge $e \in E$ call (arbitrarily) $h(e), t(e)$ the vertices at the two ends of $E$ (so that $h(e)=t(e)$ if $e$ is a loop).

Consider then the matrix

$$
A(G) \in \mathbb{K}^{V \times E}
$$

defined by letting the $e$-th column be the vector

$$
a_{e}:=\mathbb{1}_{h(e)}-\mathbb{1}_{t(e)}
$$

where $\mathbb{1}_{v}$ denotes the $v$-th standard basis vector in $\mathbb{K}^{V}$.
Notice that the linear dependency of the $a_{e}$ does not depend on the choice of $h$ and $t$.
Example 2.9. For the graph in Example 2.7 (choosing $h\left(e_{1}\right)=t\left(e_{4}\right)=v_{1}, h\left(e_{5}\right)=h\left(e_{2}\right)=v_{3}$ ) we have

$$
A(G)=\left[\begin{array}{rrrrr}
1 & 0 & 0 & -1 & -1 \\
-1 & -1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

We now claim that $M(A(G)) \simeq M(G)$.
We have to prove the following:

$$
X \subseteq E \text { is a cycle } \Leftrightarrow\left(a_{e}\right)_{e \in X} \text { is linearly dependent }
$$

$\Rightarrow$ If $X$ is a cycle, it contains a circuit $C$, say $e_{1}, \ldots, e_{k}$. We can assume that $h, t$ are so that $t\left(e_{i}\right)=h\left(e_{i+1}\right)$, and $t\left(e_{k}\right)=h\left(e_{1}\right)$. Then, $\sum_{i=1}^{k} a_{e_{i}}=0$ is a nontrivial linear dependency in $\left(a_{e}\right)_{e \in X}$.
$\Leftarrow \operatorname{Suppose}\left(a_{e}\right)_{e \in X}$ is linearly dependent. If $a_{e}=0$ for some $e$, then the loop $e$ is the required cycle. Otherwise there is a nonempty $Y \subseteq X$ with $\sum_{e \in Y} \lambda_{e} a_{e}=0$ with $\lambda_{e} a_{e} \neq 0$ for all $e \in Y$. In particular, for every component $v$ of this sum, there are $f, g \in Y, f \neq g$, with $\left(a_{f}\right)_{v},\left(a_{g}\right)_{v} \neq 0$. This means that the graph with edge set $Y$ and vertex set $h(Y) \cup t(Y)$ has degree at least 2 everywhere and thus, as was proved in the warm-up, contains a circuit.

Corollary 2.10. The independent sets of a graphic matroid with graph $G$ are the edge-sets of cycle-free subgraphs of $G$.

## 3. Bases and rank

We have seen that, by the hereditary property, to specify a matroid $(E, \mathcal{I})$ is equivalent to specifying the (inclusion-)maximal elements of $\mathcal{I}$.

Definition 3.1. Let $M=(E, \mathcal{I})$ be a matroid. Let

$$
\mathcal{B}(M):=\max _{\supseteq} \mathcal{I}=\{B \in \mathcal{I} \mid I \supseteq B, I \in \mathcal{I} \Rightarrow I=B\}
$$

The elements of $\mathcal{B}(M)$ are called bases of $M$.
Lemma 3.2. Let $M$ be a matroid and let $B_{1}, B_{2} \in \mathcal{B}(M)$. Then, $\left|B_{1}\right|=\left|B_{2}\right|$.
Proof. By way of contradiction: assume $\left|B_{1}\right|<\mid B_{2}$, then by ( $\left.\mathcal{I} 3\right)$ there is $e \in B_{2} \backslash B_{1}$ with $B_{1} \cup\{e\} \in \mathcal{I}(M)$. Since $B_{1} \subsetneq B_{1} \cup\{e\}$, this contradicts maximality of $B_{1}$. Thus, $\left|B_{1}\right| \geq\left|B_{2}\right|$. By symmetry, $\left|B_{1}\right| \leq\left|B_{2}\right|$.

Definition 3.3. The rank of a matroid $M=(E, \mathcal{I})$ is the cardinality $\operatorname{rk}(M)=|B|$ of any basis $B \in \mathcal{B}(M)$.

We can assign a rank to every subset of $E$ by setting

$$
\operatorname{rk}(X):=\operatorname{rk}(M[X]) \text { for every } X \subseteq E
$$

The resulting function rk : $2^{E} \mapsto \mathbb{N}$ is called the rank function of $M$.

There is a cryptomorphic definition of matroids via the rank function, given as follows.
Theorem 3.4. Let $E$ be a finite set. A function $\mathrm{rk}: 2^{E} \rightarrow \mathbb{N}$ is the rank function of a matroid on $E$ if and only if it satisfies the following criteria.
(R1) For all $X \subseteq E: \operatorname{rk}(X) \leq|X|$.
(R2) For all $X \subseteq Y \subseteq E: \operatorname{rk}(X) \leq \operatorname{rk}(Y)$
(R3) For all $X, Y \subseteq E: \operatorname{rk}(X)+\operatorname{rk}(Y) \geq \operatorname{rk}(X \cap Y)+\operatorname{rk}(X \cup Y)$.

See pages 20 and ff . of Oxley's book for a proof.

Here we continue by stating two properties of bases of matroids.
Proposition 3.5. Let $M$ be a matroid and let $\mathcal{B}=\mathcal{B}(M)$ be its set of bases. Then
(B1) $\mathcal{B}$ is not empty
(B2) If $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \backslash B_{2}$, then there is $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\} \in \mathcal{B}$.
Proof. ( $\mathcal{B} 1$ ) is immediate from ( $\mathcal{I} 1$ ). For ( $\mathcal{B} 2$ ) take $B_{1}, B_{2} \in \mathcal{B}$ and $x \in B_{1} \backslash B_{2}$. We split the proof in two parts.

Existence of $y$. By Lemma 3.2, $|B 1 \backslash\{x\}|<\left|B_{2}\right|$, and thus by $(\mathcal{I} 3)$ there is $y \in B_{2} \backslash\left(B_{1} \backslash\{x\}\right)$ such that $\left(B_{1} \backslash\{x\}\right) \cup\{y\} \in \mathcal{I}(M)$.
Maximality of $\left(B_{1} \backslash\{x\}\right) \cup\{y\}$. Let $B^{\prime} \in \mathcal{B}(M)$ with

$$
B^{\prime} \supseteq\left(B_{1} \backslash\{x\}\right) \cup\{y\}
$$

We compute $\left|B^{\prime}\right|=|B|=\left|\left(B_{1} \backslash\{x\}\right) \cup\{y\}\right|$ (the last equality since $x \in B_{1}$ and $\left.y \notin B_{1}\right)$, and with $(\ddagger)$ we conclude $B^{\prime}=\left(B_{1} \backslash\{x\}\right) \cup\{y\}$.

We conclude by proving that, in fact, axioms ( $\mathcal{I} 1)$ and ( $\mathcal{I} 2$ ) five yet another cryptomorphic definition of matroids.

Theorem 3.6. Let $E$ be a finite set, $\mathcal{B} \subseteq 2^{E}$ be any collection satisfying (B1) and (B2). Consider

$$
\mathcal{I}:=\{I \subseteq E \mid I \subseteq B \text { for some } B \in \mathcal{B}\}
$$

Then $M=(E, \mathcal{I})$ is a matroid with $\mathcal{B}(M)=\mathcal{B}$.
Proof. If $M$ is a matroid, clearly $\mathcal{B}$ is its set of bases. It is then enough to prove that $\mathcal{I}$ satisfies ( $\mathcal{I} 1-3$ ).
$(\mathcal{I} 1)$ for $\mathcal{I}$ follows immediately from $(\mathcal{B} 1)$ for $\mathcal{B}$.
$(\mathcal{I} 2)$ Let $I \in \mathcal{I}$ and consider $I^{\prime} \subseteq I$. By definition there is $B \in \mathcal{B}$ with $I \subseteq B$ - but then $I^{\prime} \subseteq B$ as well, and so $I^{\prime} \in \mathcal{I}$.
(I3) By way of contradiction, suppose that $(\mathcal{I} 3)$ fails for $\mathcal{I}$ and choose $I_{1}, I_{2}$ with $\left|I_{1}\right|<\left|I_{2}\right|$ and $\left(I_{1} \cup\{e\}\right) \notin \mathcal{I}$ for all $e \in I_{2} \backslash I_{1}$.

Among all $B_{1}, B_{2} \in \mathcal{B}$ with $B_{1} \supseteq I_{1}$ and $B_{2} \supseteq I_{2}$ choose a pair so that $\left|B_{2} \backslash\left(I_{2} \cup B_{1}\right)\right|$ is minimal.

Now we state a few claims about the relationships among the various sets, establishing the following diagram.

(1) $I_{2} \backslash B_{1}=I_{2} \backslash I_{1}$ by the choice of $I_{1}, I_{2}$.
(2) $B_{2} \backslash\left(I_{2} \cup B_{1}\right)=\emptyset$.

Proof. By way of contradiction choose $x \in B_{2} \backslash\left(I_{2} \cup B_{1}\right) \subseteq B_{2}$. Then (B2) gives a $y \in B_{1} \backslash B_{2}$ with $\left.\left(B_{2} \backslash\{x\}\right) \cup\{y\}\right) \in \mathcal{B}$. But this would imply

$$
\left|\left[\left(B_{2} \backslash\{x\}\right) \cup\{y\}\right] \backslash\left(I_{2} \cup B_{1}\right)\right|<\left|B_{2} \backslash\left(I_{2} \cup B_{2}\right)\right|
$$

contradicting the choice of $B_{1}, B_{2}$.
(3) $B_{2} \backslash B_{1}=I_{2} \backslash I_{1}$ (by (1) and (2), e.g. after inspecting the diagram above).
(4) $B_{1} \backslash\left(I_{1} \cup B_{2}\right)=\emptyset$

Proof. By way of contradiction, choose $x \in B_{1} \backslash\left(I_{1} \cup B_{2}\right)$. Then (B2) gives an $y \in B_{2} \backslash B_{1}$ with $\left.\left(B_{1} \backslash\{x\}\right) \cup\{y\}\right) \in \mathcal{B}$. In particular, $I_{1} \cup\{y\} \in \mathcal{I}$ for some $y \in B_{2} \backslash B_{1}=I_{2} \backslash I_{1}$ the last equality via (3)). This cannot be, since $I_{1}, I_{2}$ violate $(\mathcal{I} 3)$ by assumption.
(5) $B_{1} \backslash B_{2} \subseteq I_{1} \backslash I_{2}$. This is because (4) implies $B_{1} \backslash B_{2}=I_{1} \backslash B_{2}$, and the latter is a subset of $I_{1} \backslash I_{2}$ by definition.
(6) - The final contradiction!

By Lemma 3.2 we have $\left|B_{1}\right|=\left|B_{2}\right|$, whence the equality in the middle of the following expression:

$$
\left|I_{1} \backslash I_{2}\right| \stackrel{(5)}{\leq}\left|B_{1} \backslash B_{2}\right|=\left|B_{2} \backslash B_{1}\right| \stackrel{(3)}{=}\left|I_{2} \backslash I_{1}\right|
$$

Now, $\left|I_{1} \backslash I_{2}\right| \leq \mid I_{2} \backslash I_{1}$ implies $\left|I_{1}\right| \geq\left|I_{2}\right|$, a contradiction!.


[^0]:    ${ }^{1}$ In fact, by maximality of $I_{3}, T_{f} \subseteq I_{1} \cup I_{2}$ and $\left|I_{1} \backslash T_{f}\right|<\left|I_{1}-I_{3}\right|$ imply $T_{f} \notin \mathcal{I}$.

