Counting Matroids J

Rudi Pendavingh

March 27, 2015

Rudi Pendavingh Counting Matroids March 27, 2015 1/52



@ Introduction to counting matroids
@ A question
@ Some early answers
o Conjectures

© New upper bounds
@ Better matroid compression
@ An entropy method

© Hard work
@ Counting stable sets
@ Matroid vs stable sets

Rudi Pendavingh Counting Matroids March 27, 2015 2 /52



Introduction to counting matroids A question

How many matroids on a fixed ground set E exist?
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

Some names

[n] :={1,...,n}

mp == #{M matroid : E(M) = [n]}

mp , := #{M matroid : E(M) = [n],r(M) =r}
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Introduction to counting matroids Some early answers

A naive upper bound

A matroid on E is determined by the set of its independent sets Z C 2. Hence
m, < 22"

Therefore,
log m, < 2"

Logarithms are to the base 2 today.
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Some early answers
A slightly less naive upper bound

A matroid on E of rank r is determined by bases B C (f) ={X CE:|X|=r}. Hence
mn, < 2(0) < 2 1n/2))
Therefore m, =5, my, < (n+ 1)2(L"’/12J), hence
log m, < log(n+1) + (L”72J> < 0(2"/+/n) as n — oo

Here we used that

\2/;\/3(1 ~o) = () < f\[ e
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CECI T
A faithful description of matroids..

Lemma

The following are equivalent for a matroid M = (E,B) and a set X C E
o X is a dependent set of M
@ there is a circuit C of M so that C C X
@ there is a circuit C of M so that | X N cly(C)| > rm(C)

Each matroid M on a fixed ground set E is determined by the set

K(M) :={(cIlm(C), rm(C)) : C a circuit of M}
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

..which is more compressed

Each matroid M on a fixed ground set E is determined by the set

K(M) :={(cIlm(C), rm(C)) : C a circuit of M}

Lemma
If M is a matroid on n elements, then |KC(M)| < 2"+1/(n+1).

Proof.
For each circuit C, there are |C| sets Y C C of size ry(C) so that clpy(Y) = cly(C). Hence

#{(cIpm(C), rm(C)) : C a circuit of M, ry(C) =i} < <7> /(i +1).

Hence [K(M)| = i, (1)/(i +1) = 210, (F1) /(0 + 1) = 2771 /(n + 1), =
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

Piff's upper bound on the number of matroids

Theorem (Piff, 1973)

log m, < O(2"log(n)/n) as n — oo

Proof.

Each matroid on n elements is determined by K C 2F x [n + 1] of size |K| < 2"*1/(n+ 1), so

m< Y <2”(nl_+ 1)) - < m >2"+1/(n+1)

i<2m+1/(n41)
and hence log m, < (2"71/(n+ 1)) - log(e(n + 1)2/2). O
Here we used
k
n en\ k
>(0) =< (%)
; i k
i=0
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Introduction to counting matroids Some early answers

Some bounds for well-known classes of matroids

What do we know about the number of matroids on n elements in various classes?

class

upper bound  log u.b.

graphic matroids
binary matroids

GF(q)-representable matroids
transversal matroids

real-representable matroids

Theorem (Alon, 1986)

("erl)n O(nlogn)

(2n)n n2
(g")" n? |02gq
2mn n
( n2 3
2 n

The number of real-representable matroids of rank r on n elements is between

n(rfl)znfO(rzn(log r+loglog n)/(log n)

and n

r(r—1)n+O(nrloglog n/ log n)

No construction within these classes will yield a lower bound near Piff's upper bound.
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Counting Matroids March 27, 2015

10 / 52



Introduction to counting matroids Some early answers

Paving matroids

Definition

A matroid M is paving if |C| > r(M) for each circuit C of M. J

Crapo and Rota (1970) consider it likely that paving matroids

”

. would actually predominate in any asymptotic enumeration of geometries”

based on the enumeration of matroids up to 8 elements (Blackburn, Crapo, and Higgs).

Definition

A matroid M is sparse paving if both M and M* are paving. J

If almost all matroids are paving, then almost all matroids are sparse paving.
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

Sparse paving matroids

Lemma

Let 0 < r < |E| and let B C (’;:) ={X CE: |X|=r}. The following are equivalent:
Q@ M = (E,B) is a sparse paving matroid
@ |XAY| > 2 for all distinct X,Y € () \ B

Proof.
(1) = (2): if X, Y € (5)\ Band [XAY]| =2, then

2r=1D)>r(X)+r(Y)>r(XUY)+r(XNY)

so that either (X NY)<r—Tlorr(XUY)<r.

In either case M = (E, B) is not sparse paving. Ol
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

Sparse paving matroids

Lemma

Let 0 < r < |E| and let B C ('f) ={X C E: |X|=r}. The following are equivalent:
@ M = (E,B) is a sparse paving matroid
@ [XAY| > 2 for all distinct X, Y € (5) \ B

Proof.
(2) = (1): Suppose (2) holds. If M were not a matroid, then

B,B' € B, dec B\B,VfeB'\B: B—e+f¢&B

Pick f,f" € B'\ B distinct, then X := B —e+f,Y := B — e+ f’ violate (2), contradiction.
If D is a dependent set of size |[D| =r — 1, then X :=D + e, Y := D + f violate (2),
contradiction. So M is paving and the dual argument shows that M* is also paving. O

v
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S
The Johnson graph

The Johnson graph J(E,r) is the undirected graph with
vertices

vuED) = (1) = xcExi=n)

and edges

E(J(E,r)) = {XY : |[XAY]| =2}

We put J(n, r) := J([n], r).

Lemma

E
S is a stable set of J(E,r) <= M = (E, (r) \'S) is a sparse paving matroid
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Introduction to counting matroids Some early answers

More names

Sp := #{M sparse paving matroid : E(M) = [n]}

Sn.r == #{M sparse paving matroid : E(M) = [n],r(M) = r}

Sn,r equals the number of stable sets of J(n,r)
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

Knuth's lower bound on the number of matroids

Let a(G) := max{|S|: S C V(G) a stable set of G}.
Theorem (Knuth, 1974)

log sn.r > a(J(n, 1))

Proof.
J(n,r) has a stable set Sq of size a(J(n,r)). Each S C Sy is a stable set of J(n,r), so that

s, > 2%l = ga(J(nr)

In 1974, this gave the lower bound
log m, > logs, > log s, > > a(J(n,n/2)) > < ;2>/(2n)
’ n
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Introduction to counting matroids [ESIINER-ETIVEELEWIS

An improvement of Knuth's bound

Theorem (Graham & Sloane, 1980)
J(n, r) has a stable set of size () /n.

Proof.
For each k € Z, the set

S(n,r, k) = {X ¢ <[’r’]> .Y x=k mod n}

xeX

is stable in J(n, r). Since J;_; S(n,r, k) = (['r’]), we have [S(n, r, k)| > (7)/n for some k. [

v

And so we obtain

log mp, > log s, n/» > a(J(n,n/2)) > <n,/72>/n.
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Introduction to counting matroids Conjectures

Conjectures on matroid asymptotics

We say that ‘asymptotically almost all matroids have property P’ if

#{M € M, : M has property P}

n||—>ngo #M,, 1
Here M, denotes the set of matroids with ground set {1,..., n}.

Conjecture (Mayhew, Newman, Welsh and Whittle, 2011)
o Asymptotically almost all matroids are sparse paving.
o If N is a fixed sparse paving matroid, then a.a.a. matroids have N as a minor.
e Asymptotically almost all matroids M on n elements have | 5] < r(M) < [7].

o Let k € N. Asymptotically almost all matroids are k-connected.

Theorem (Oxley, Semple, Warshauer, Welsh, 2011)

Asymptotically almost all matroids are 3-connected.
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Introduction to counting matroids Conjectures

Inspiration from matroid computation

Since 2012, the computer algebra system Sage contains a matroid package (P. & van Zwam).
The development of this package raised the following problem:

How to store a general matroid on n elements as concise as possible, but so that the
rank oracle takes poly(n) time?

We settled on the BasisMatroid:

@ stores a matroid on E elements of rank r as a the indicator function of its bases B C (’;:)
the length of this description is (’r’) bits.

@ the rank oracle takes poly(n) time

We also still use the more human-friendly CircuitClosuresMatroid:

@ stores a matroid M using Piff’s compact description
K(M) = {(clm(C), rm(C)) : C a circuit of M}; the length of the data is O(2")
@ the rank oracle does not run in poly(n) time from this data
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Introduction to counting matroids Conjectures

Break
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New upper bounds Better matroid compression

A new upper bound

Theorem (Piff, 1973)

I
logm, < O ( og(n)2n> asn— oo
n

Theorem (Bansal, P. , van der Pol, 2012)

logm, < O (lng(n) (n;2>> as n— oo

Proof outline:
@ a cover of a matroid M gives a compressed description of M
@ each n-element matroid of rank r has a cover of ‘size’ < kj ,

@ # of matroids on n elements of rank r is < the # of covers of size < k,, ,
H ~ (N n/,3/2
We aim for ks, = (7)/n < O(2"/n/?).
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New upper bounds Better matroid compression

Matroid covers

Let M = (E, B) be a matroid of rank r.
Definition
Let X C E. Aflat F of M covers X if |[F N X| > ry(F). J

A flat that covers X certifies that X is dependent.

Definition
A collection Z C F(M) covers M if

E
for all X € <r> \ B, there exists F € Z covering X

If Z covers M, then {(F,rm(F)): F € Z} determines M.
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New upper bounds Better matroid compression

Matroids have small local covers

Let M = (E, B) be a matroid of rank r. Let X € (f)

Lemma
There exists a Zx C F(M) such that
e |Zx| <rand
o Zx covers each dependent Y € (E) \ B such that |YAX| <2

Proof.
Take

Zx ={cy(X —x): x € X}
If Y =X —x+y and cly(X — x) does not cover Y, then

r—=1=|X—x|<l|du(X-=x)NY| < rm(cu(X —x))<r—1

Sormy(X —x)=r—1andy ¢ cly(X — x), hence riy(X —x+y) =r, i.e. Y independent. [

v
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New upper bounds Better matroid compression

J(n, r) has a small dominating set

Let G = (V, E) be a graph. A set D C V is dominating if
DUN(D) = V

where N(D) :={ve V\D:de D,dveE}

Theorem (Lovész, 1975)

If G =(V,E) is d-regular, then G has a dominating set D C V' with

n(d+1)+1

I
D < TS )

Corollary

The Johnson graph J(n,r) has a dominating set D with

i<t )

v
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New upper bounds Better matroid compression

Matroids have small covers

Theorem

Let M = (E, B) be a matroid of rank r, with n = |E|. Then M has a cover Z such that
12| < In(r(n—r)+1)+1(n) ok

= Kn,r
n—r r

Proof.

Take

z:=J 2x
XeD
where
e D is a dominating set of J(E, r) with |D| < %(f)

@ each Zx covers the non-bases in N({X}) U{X}, with |[Zx| <r
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S G
Finishing up

Theorem (Bansal, P. , van der Pol 2012)

log m, < O<Iog2(n)( n )) as n— oo

n n/2

Proof.

Each matroid M = (E, B) on n elements of rank r is determined by the set
{(F,rm(F)): Fe Zy €25 x{0,...,r—1}
for some cover Z with |Z| < kj, . Hence

2!1 2!7 kn,n/2
mp, < Z ( .n> < < . )

k
./'Smin{kn,rykn,nfr} J n7n/2

where kp, /> ~ %ﬁ”)(n%). O
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A newer upper bound

Theorem (Bansal, P. , van der Pol, 2012)

logm, < O (lng(n)< n )) as n— 0o

n n/2

Theorem (Bansal, P. , van der Pol, 2013)

logm, < O <|Og,$n) <n’/72)> as n — oo

@ we use entropy to bound mp . in terms of m,_; ¢

Proof outline:

@ we derive a bound on m, >

@ putting together the two, we get a sufficient bound

Further applications: counting minor-closed classes and counting oriented matroids.
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New upper bounds

Entropy and counting

Let X be a random variable drawn from a finite set S with probability p € Ri
The entropy of X is

H(X) = pslog(1/ps)

seS

Lemma

max{ _ pslog(1/ps) : p a probability distribution on S} = log |S|
seS

The maximum is attained by the uniform distribution, i.e. ps = |S|~! for all s € S; then

H(X) = Zps IOg(l/ps) = log |5‘
seS
To bound |S| is to bound the entropy of the random variable X drawn uniformly from S
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New upper bounds

Shearer's Lemma

@ IfS=5 x---x5,, and X is drawn from S, then X is a vector with entries X; € ;.
e For a set A C [m], we denote the restriction of X to A by Xa := (Xi)iea
o If X is drawn according to p, then X, is drawn according to pa where

pa(Y)= Y p(X)

Definition
A collection of sets A C 2™l is a k-cover if each i € [m] is in > k sets from A.

Theorem (Shearer)
Suppose X is a random variable drawn from S = S; x --- x 5,,. Let A be a k-cover of [m].

Then
kH(X) < ) H(Xa)

AcA

4
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An application

Theorem (Shearer)

Suppose X is a random variable drawn from S = S; x --- x 5,,. Let A be a k-cover of [m].
Then

kH(X) < ) H(Xa)

AcA

Theorem

Let T C Z3 be a finite set of points. Let T; := {m;(t) : t € T}, where 7; is the orthogonal
projection parallel to e;. Then |T|?> < |Ty|-|T2|-|T3|.

Proof.
Let X be the random variable drawn uniformly from T. Then by Shearer's Lemma

2log | T| = 2H(X) < H(X2,31) + H(X{1,33) + H(X(1,23) < log | T1| + log | T2| + log | T3]

4
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New upper bounds

Application to counting matroids

Lemma
n

log(1+ mj, ) < log(1+ my_1,r)

n—r

Proof.
Let X be the random variable drawn uniformly from sets B C (f) satisfying base exchange.
We identify X with its indicator vector in {0, 1}(7).

o Let A :={Y € (f) e Y} Then A:={A.: e € E} isan (n— r)-cover of (’f)

@ Xj, is a set of subsets from (E:e) satisfying base exchange

@ By Shearer's Lemma,

(n— r)log(1+ my,) = (n— NH(X) < 3" H(Xa,) < nlog(1 + my_1,)
ecE

O]

v
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New upper bounds

Finishing up
Theorem
— t
log(1+ my,)/ <'r7> <log(L+ My—ritt)/ (" ;Jr )
Lemma

1+ mpo <(n+1)"

Theorem (Bansal, P. , van der Pol, 2013)

logm, < O (Iog(n)( n >) asn— oo
n \n/2
Proof.

log(1 4+ my.,) < log(1+ mp_ry22)  (n—r+2)log(n—r+3) 2log(n—r+3)

< < =
@) ("5 (n—r+2)(n—r+1)/2 n—r+1
Counting Matroids March 27, 2015

32 /52



New upper bounds

Matroids without a sparse paving minor

Conjecture (Mayhew, Newman, Welsh and Whittle, 2011)

If N is a fixed sparse paving matroid, then asymptotically almost all matroids have N as a

minor.
[ N )
e o & 0o e o690
[ I )

o o o *—o—o

Us « Uz Pe Q6 Re
Theorem (P., van der Pol, 2013)
If N = Uy for some k > 2, or if N is one of Uz, Ps, Qs or Rs, then

. #{M e M, : M does not have N as a minor}
lim =0.
n—o00o #Mn
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New upper bounds

Counting matroids in minor-closed classes

Theorem (P., van der Pol, 2013)
If N = Uy for some k > 2, or if N is one of U3, Ps, Qs or Rs, then

. #{M e M, : M does not have N as a minor}
lim =
n—o0 #M,,

0.

Lemma

If M is a simple matroid of rank 3 without U, x minor, then |E(M)| < k2.

Hence there are at most O(k2") matroids on n elements of rank 3 without Ua x, hence
log(my,, +1) _ log(m),_,,33+1)

= —r+3

() ("37)

which implies log m/, < O((n’/’z)/nz) for the number of matroids without Us 4.

< O(1/n%)
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New upper bounds

Counting oriented matroids

Let p, , denote the number of oriented matroids on E = [n] of rank r. By entropy counting

t

l0g(1 + pn)/ ('Z) < log(1 + pn—r+t,t)/ (” —r+ t>

Theorem (Felsner& Valtr; Bern, Eppstein, Plasman &Yao)
0.1887n° < log pp3 < 1.085n° J

So for each t > 3 there is a ¢; such that log(1+ pn¢)/(]) < ¢¢/n, indeed ¢t < c;1 < -+ < 3.

Conjecture
Asymptotically almost all matroids are not orientable. J

If we can show ¢; < % for some t, then the conjecture is proven. Perhaps t =4 or t =57
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New upper bounds

Break
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Where are we?

LY ogs, <1 ~olosn(n =
= ogsp < logm as n
n\n/2) — §5n = 108 fMn = n \n/2 >

Where is the gap?

So far, we have

In what follows, we show:
Theorem (Bansal, P., van der Pol, 2012)

n

n/2>(1+o(1)) asn— oo

3
log m, < —
n

Theorem (P., van der Pol, 2014)
logm, = (14 o(1))logs, as n — oo
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A first bound on s, ,

For any graph G on N vertices, the number of stable sets i(G) satisfies

a(G a(G)
N elN
2C) < j(G) < < ==
sfel= 2 <k> = <a(c>)

~

Theorem (Hoffman)
Let G = (V,E) be d-regular, on N vertices, with smallest eigenvalue —\. Then

A
—
al6) = 3N

For G = J(n,r), we have d = r(n—r) and A = r if r < n/2. Hence

1
n—r—+1

1

- (’;) < log sp, = log i(J(n, r)) < (';) log(e(n — r +1))

n
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Counting stable sets in regular graphs

Let G = (V, E) be d-regular, on N vertices, with smallest eigenvalue —\. Put

A In(d +1
oz::ia'—in( +1)

d+ X~ d+ A

Theorem

i(6) < (SN 2o

Lemma (Alon, Balogh, Morris, and Samotij)

If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
@ S uniquely determines A
e |S|<oN and|Al < aN

Rudi Pendavingh Counting Matroids March 27, 2015
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Proof of the Lemma

Lemma (Alon, Balogh, Morris, and Samotij)

If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
@ S uniquely determines A
e |S| <oN and |Al < aN

Fix linear ordering < of V.

Construction of S, A
@ Put A<V, S+
e while |A| > aN:

o let v be the <-maximal vertex among max. degree vertices in G[A]
eifvelU put S« S+vand A« A\ (N(v)+v)
eifve U put A~ A—v

The lemma is direct from this construction, except that |S| < o/ at termination.

Rudi Pendavingh Counting Matroids March 27, 2015 40 / 52




ETGE S
Why S is small..

Fix linear ordering < of V.

Construction of S, A
o Put A« V, S+ 0
e while |A| > aN:
o let v be the <-maximal vertex among max. degree vertices in G[A]

oifvelU put S« S+vand A« A\ (N(v)+v)
oifve U put A A—v

Lemma (Alon&Chung; Haemers)
For any € > 0, if |A| = (o + €)N, then G[A] contains a vertex of degree at least e(d + \).

Corollary (Bansal, P., van der Pol)

At termination, |S| < oN.
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Lemma (Alon, Balogh, Morris, and Samotij)

If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
@ S uniquely determines A
e |S| <oN and |Al < aN

Theorem

i(6) < ()M 2M

Proof.
@ Let U C V(G) be a stable set of G
@ pick S, A as in the lemma; U is stable, so SCUCSUA

olN
N
i(G) < (# of possible S) - (# of possible AN U given S) < (Z <k>> . paN
k=0
DJ
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Bound on the number of sparse paving matroids

Theorem

2( n
< —
log s, < n<n 2>(1+o(1)) as n— oo

Proof.
By the Theorem
o = i(J(n 1)) < (SN 2o

where (for r < n/2):

o = g =

ey = ()

The bound on s, = 3" s, , is dominated by r ~ n/2. Then a ~ 2, ¢ ~ 811“2"'
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How about general matroids?

Lemma (Alon, Balogh, Morris, and Samotij)

If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
@ S uniquely determines A
e |S| <oN and |Al < aN

Consider a matroid M = (E, B) of rank r.
To encode M, we put U = (’;:) \ B and apply the Lemma to get S, A. Then

SCUCSUN(S)UA
We have

mp., < (# of possible S) - (# of possible N(S) N U) - (# of possible AN U given S)
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Matroids have small local covers Il

Let M = (E, B) be a matroid of rank r. Let X € (’f)

Lemma

There exists a set of flats Zx of M covering each dependent Y € N(X), such that |Zx| < r.

Lemma
Suppose X is dependent.
There exists a set of flats Zx of M covering each dependent Y € N(X), such that |Zx| < 2.

Proof.
o If ry(X) <r—1, put Zx = {cl(X)}.
o If ry(X)=r—1, X contains a unique circuit C, is disjoint from a unique cocircuit D.
Put Zx = {cl(C),E\ D}

O

v
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Bound on the number of matroids

Theorem (Bansal, P., van der Pol , 2012)

log m, < 127<n,/72> (14 o0(1)) asn— oo

Proof.
To encode M, we put U = (f) \ B and apply the Lemma to get S, A. Then
SCUCSUN(S)UA

The number of possible (S, AN U) is bounded as before.
For each X € S, we make a local cover Zx s.t. |Zx| <2 and put

Z::UZX

XeS

Then Z determines N(S) N U, and |Z| < 2|S| < 20N, bounding the number of N(S)N U.

O]
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In the proof, we encode U as a triple

S,N(S)NU,ANU

o there are < 37N (V) < (e/o)?N possibilities for S
@ there are < 22"’\/ ( ") < (en/c)?N possibilities for N(S) N U
o there are < 2N possibilities for AN U (given S)

The case r ~ n/2 again dominates the bound, and then

2 8lnn
ar—, 0N —
n n

So the bottleneck is the bound on the number of possible AN U.

Can we further compress AN U to get a better bound?
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SRR
The neighborhood N(X) in the Johnson graph

The sets Rx(x) :={X —x+y:y € E\ X} and Cx(y) :={X —x+y:x e X} are cliques.
X—=—x+y X—x+Yy

) I
ERCEOLT (olofjor--[o]]x¢c
oo 0 -0 |e/l@/of - @]

o oo -0 0000
%, %, o Feg

Lemma

Let M = (E,B) be a matroid, let X € U = (’f) \Bandxe X #y. If R¢(x)\ U# 0 and
Cx(y)\ U #0, then the set U N N(X) is determined by Rx(x) N U and Cx(y) N U.
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A better Lemma

Lemma (Alon, Balogh, Morris, and Samotij)

If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
o S uniquely determines A
o |S| <oN and |Al < aN

For any fixed k we have this variant:

Lemma
If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
@ S uniquely determines A
o |S| < (oc+a/k)N, |Al <aN, max. degree in G[A] is < k

Rudi Pendavingh Counting Matroids March 27, 2015

49 / 52



Lemma

If U C V, then there exist sets S, A C V such that
e SCUCSUN(S)UA
@ S uniquely determines A
o |S| < (oc+a/k)N, |Al <aN, A(G[A]) < k

Theorem (P., van der Pol, 2014) ] —
logm, = (14 o(1))logs, as n — oo N(X), X dependent

Proof.

o To encode a matroid M = (E,B) on n of rank r , we put U = (£) \ B.

o Apply the Lemma with k = min{r,n—r}. Then SC U CSUN(S)UA

@ As before a cover Z of size at most 2|S| determines N(S) N U.

@ Pick a certain stable set T C ANU. Then AN U is determined by (S, T, Z).

o Now log mp, , < log(# of T) + log(# of (S,2)) <logs,, + (relatively small)

4
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Matroid vs stable sets
Last words

Conjecture

Asymptotically all matroids M on n elements have |n/2| < r(M) < [n/2].

Theorem

There is a 8 so that asymptotically almost all sparse paving matroids M on n elements have

n/2 — By/n < r(M) < n/2 + B/

Corollary

There is a 3’ so that asymptotically almost all matroids M on n elements have

n/2 —p'v/n<r(M)<n/2+5'vn

We know virtually nothing about the similarity of adjacent Johnson graphs. E.g.

Conjecture
For any n and r < r' < n/2, we have sp, < sp . J
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Thank you
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