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Introduction to counting matroids A question

How many matroids on a fixed ground set E exist?
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Introduction to counting matroids Some early answers

Some names

[n] := {1, . . . , n}

mn := #{M matroid : E (M) = [n]}

mn,r := #{M matroid : E (M) = [n], r(M) = r}
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Introduction to counting matroids Some early answers

A naive upper bound

A matroid on E is determined by the set of its independent sets I ⊆ 2E . Hence

mn ≤ 22
n

Therefore,
logmn ≤ 2n

Logarithms are to the base 2 today.
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Introduction to counting matroids Some early answers

A slightly less naive upper bound

A matroid on E of rank r is determined by bases B ⊆
(E
r

)
:= {X ⊆ E : |X | = r}. Hence

mn,r ≤ 2(nr) ≤ 2( n
bn/2c)

Therefore mn =
∑

r mn,r ≤ (n + 1)2( n
bn/2c), hence

logmn ≤ log(n + 1) +

(
n

bn/2c

)
≤ O(2n/

√
n) as n→∞

Here we used that

2n√
n

√
2

π
(1− o(1)) ≤

(
n

bn/2c

)
≤ 2n√

n

√
2

π
as n→∞
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Introduction to counting matroids Some early answers

A faithful description of matroids..

Lemma

The following are equivalent for a matroid M = (E ,B) and a set X ⊆ E

X is a dependent set of M

there is a circuit C of M so that C ⊆ X

there is a circuit C of M so that |X ∩ clM(C )| > rM(C )

Each matroid M on a fixed ground set E is determined by the set

K(M) := {(clM(C ), rM(C )) : C a circuit of M}
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Introduction to counting matroids Some early answers

..which is more compressed

Each matroid M on a fixed ground set E is determined by the set

K(M) := {(clM(C ), rM(C )) : C a circuit of M}

Lemma

If M is a matroid on n elements, then |K(M)| ≤ 2n+1/(n + 1).

Proof.

For each circuit C , there are |C | sets Y ⊆ C of size rM(C ) so that clM(Y ) = clM(C ). Hence

#{(clM(C ), rM(C )) : C a circuit of M, rM(C ) = i} ≤
(
n

i

)
/(i + 1).

Hence |K(M)| =
∑

i<n

(n
i

)
/(i + 1) =

∑
i<n

(n+1
i+1

)
/(n + 1) = 2n+1/(n + 1).
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Introduction to counting matroids Some early answers

Piff’s upper bound on the number of matroids

Theorem (Piff, 1973)

logmn ≤ O(2n log(n)/n) as n→∞

Proof.

Each matroid on n elements is determined by K ⊆ 2E × [n + 1] of size |K| ≤ 2n+1/(n + 1), so

mn ≤
∑

i≤2n+1/(n+1)

(
2n(n + 1)

i

)
≤
(

e2n(n + 1)

2n+1/(n + 1)

)2n+1/(n+1)

and hence logmn ≤ (2n+1/(n + 1)) · log(e(n + 1)2/2).

Here we used
k∑

i=0

(
n

i

)
≤
(en
k

)k
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Introduction to counting matroids Some early answers

Some bounds for well-known classes of matroids

What do we know about the number of matroids on n elements in various classes?

class upper bound log u.b.

graphic matroids
(n+1

2

)n
O(n log n)

binary matroids (2n)n n2

GF(q)-representable matroids (qn)n n2 log q
transversal matroids (2n)n n2

real-representable matroids 2n
3

n3

Theorem (Alon, 1986)

The number of real-representable matroids of rank r on n elements is between

n(r−1)
2n−O(r2n(log r+log log n)/(log n) and nr(r−1)n+O(nr log log n/ log n).

No construction within these classes will yield a lower bound near Piff’s upper bound.
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Introduction to counting matroids Some early answers

Paving matroids

Definition

A matroid M is paving if |C | ≥ r(M) for each circuit C of M.

Crapo and Rota (1970) consider it likely that paving matroids

” ... would actually predominate in any asymptotic enumeration of geometries”

based on the enumeration of matroids up to 8 elements (Blackburn, Crapo, and Higgs).

Definition

A matroid M is sparse paving if both M and M∗ are paving.

If almost all matroids are paving, then almost all matroids are sparse paving.
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Introduction to counting matroids Some early answers

Sparse paving matroids

Lemma

Let 0 < r < |E | and let B ⊆
(E
r

)
:= {X ⊆ E : |X | = r}. The following are equivalent:

1 M = (E ,B) is a sparse paving matroid

2 |X4Y | > 2 for all distinct X ,Y ∈
(E
r

)
\ B

Proof.

(1)⇒ (2): if X ,Y ∈
(E
r

)
\ B and |X4Y | = 2, then

2(r − 1) ≥ r(X ) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y )

so that either r(X ∩ Y ) < r − 1 or r(X ∪ Y ) < r .

In either case M = (E ,B) is not sparse paving.
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Introduction to counting matroids Some early answers

Sparse paving matroids

Lemma

Let 0 < r < |E | and let B ⊆
(E
r

)
:= {X ⊆ E : |X | = r}. The following are equivalent:

1 M = (E ,B) is a sparse paving matroid

2 |X4Y | > 2 for all distinct X ,Y ∈
(E
r

)
\ B

Proof.

(2)⇒ (1): Suppose (2) holds. If M were not a matroid, then

∃B,B ′ ∈ B, ∃e ∈ B \ B ′, ∀f ∈ B ′ \ B : B − e + f 6∈ B

Pick f , f ′ ∈ B ′ \ B distinct, then X := B − e + f ,Y := B − e + f ′ violate (2), contradiction.
If D is a dependent set of size |D| = r − 1, then X := D + e,Y := D + f violate (2),
contradiction. So M is paving and the dual argument shows that M∗ is also paving.
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Introduction to counting matroids Some early answers

The Johnson graph

The Johnson graph J(E , r) is the undirected graph with
vertices

V (J(E , r)) =

(
E

r

)
:= {X ⊆ E : |X | = r}

and edges

E (J(E , r)) = {XY : |X4Y | = 2}

We put J(n, r) := J([n], r).
J(4, 2)

Lemma

S is a stable set of J(E , r)⇐⇒ M = (E ,

(
E

r

)
\ S) is a sparse paving matroid

Rudi Pendavingh Counting Matroids March 27, 2015 14 / 52



Introduction to counting matroids Some early answers

More names

sn := #{M sparse paving matroid : E (M) = [n]}

sn,r := #{M sparse paving matroid : E (M) = [n], r(M) = r}

sn,r equals the number of stable sets of J(n, r)
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Introduction to counting matroids Some early answers

Knuth’s lower bound on the number of matroids

Let α(G ) := max{|S | : S ⊆ V (G ) a stable set of G}.

Theorem (Knuth, 1974)

log sn,r ≥ α(J(n, r))

Proof.

J(n, r) has a stable set S0 of size α(J(n, r)). Each S ⊆ S0 is a stable set of J(n, r), so that

sn,r ≥ 2|S0| = 2α(J(n,r))

In 1974, this gave the lower bound

logmn ≥ log sn ≥ log sn,n/2 ≥ α(J(n, n/2)) ≥
(

n

n/2

)
/(2n)
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Introduction to counting matroids Some early answers

An improvement of Knuth’s bound

Theorem (Graham & Sloane, 1980)

J(n, r) has a stable set of size
(n
r

)
/n.

Proof.

For each k ∈ Z, the set

S(n, r , k) := {X ∈
(

[n]

r

)
:
∑
x∈X

x = k mod n}

is stable in J(n, r). Since
⋃n

k=1 S(n, r , k) =
([n]
r

)
, we have |S(n, r , k)| >

(n
r

)
/n for some k .

And so we obtain

logmn ≥ log sn,n/2 ≥ α(J(n, n/2)) ≥
(

n

n/2

)
/n.
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Introduction to counting matroids Conjectures

Conjectures on matroid asymptotics

We say that ‘asymptotically almost all matroids have property P’ if

lim
n→∞

#{M ∈Mn : M has property P}
#Mn

= 1

Here Mn denotes the set of matroids with ground set {1, . . . , n}.

Conjecture (Mayhew, Newman, Welsh and Whittle, 2011)

Asymptotically almost all matroids are sparse paving.

If N is a fixed sparse paving matroid, then a.a.a. matroids have N as a minor.

Asymptotically almost all matroids M on n elements have bn2c ≤ r(M) ≤ dn2e.
Let k ∈ N. Asymptotically almost all matroids are k-connected.

Theorem (Oxley, Semple, Warshauer, Welsh, 2011)

Asymptotically almost all matroids are 3-connected.
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Introduction to counting matroids Conjectures

Inspiration from matroid computation

Since 2012, the computer algebra system Sage contains a matroid package (P. & van Zwam).
The development of this package raised the following problem:

How to store a general matroid on n elements as concise as possible, but so that the
rank oracle takes poly(n) time?

We settled on the BasisMatroid:

stores a matroid on E elements of rank r as a the indicator function of its bases B ⊆
(E
r

)
;

the length of this description is
(n
r

)
bits.

the rank oracle takes poly(n) time

We also still use the more human-friendly CircuitClosuresMatroid:

stores a matroid M using Piff’s compact description
K(M) := {(clM(C ), rM(C )) : C a circuit of M}; the length of the data is O(2n)

the rank oracle does not run in poly(n) time from this data
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Introduction to counting matroids Conjectures

Break
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New upper bounds Better matroid compression

A new upper bound

Theorem (Piff, 1973)

logmn ≤ O

(
log(n)

n
2n
)

as n→∞

Theorem (Bansal, P. , van der Pol, 2012)

logmn ≤ O

(
log2(n)

n

(
n

n/2

))
as n→∞

Proof outline:

a cover of a matroid M gives a compressed description of M

each n-element matroid of rank r has a cover of ‘size’ ≤ kn,r

# of matroids on n elements of rank r is ≤ the # of covers of size ≤ kn,r

We aim for kn,r ≈
(n
r

)
/n ≤ O(2n/n3/2).
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New upper bounds Better matroid compression

Matroid covers

Let M = (E ,B) be a matroid of rank r .

Definition

Let X ⊆ E . A flat F of M covers X if |F ∩ X | > rM(F ).

A flat that covers X certifies that X is dependent.

Definition

A collection Z ⊆ F(M) covers M if

for all X ∈
(
E

r

)
\ B, there exists F ∈ Z covering X

If Z covers M, then {(F , rM(F )) : F ∈ Z} determines M.
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New upper bounds Better matroid compression

Matroids have small local covers

Let M = (E ,B) be a matroid of rank r . Let X ∈
(E
r

)
.

Lemma

There exists a ZX ⊆ F(M) such that

|ZX | ≤ r and

ZX covers each dependent Y ∈
(E
r

)
\ B such that |Y4X | ≤ 2

Proof.

Take
ZX := {clM(X − x) : x ∈ X}

If Y = X − x + y and clM(X − x) does not cover Y , then

r − 1 = |X − x | ≤ |clM(X − x) ∩ Y | ≤ rM(clM(X − x)) ≤ r − 1

So rM(X − x) = r − 1 and y 6∈ clM(X − x), hence rM(X − x + y) = r , i.e. Y independent.
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New upper bounds Better matroid compression

J(n, r) has a small dominating set

Let G = (V ,E ) be a graph. A set D ⊆ V is dominating if

D ∪ N(D) = V

where N(D) := {v ∈ V \ D : d ∈ D, dv ∈ E}

Theorem (Lovász, 1975)

If G = (V ,E ) is d-regular, then G has a dominating set D ⊆ V with

|D| ≤ ln(d + 1) + 1

d + 1
|V |

Corollary

The Johnson graph J(n, r) has a dominating set D with

|D| ≤ ln(r(n − r) + 1) + 1

r(n − r) + 1

(
n

r

)
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New upper bounds Better matroid compression

Matroids have small covers

Theorem

Let M = (E ,B) be a matroid of rank r , with n = |E |. Then M has a cover Z such that

|Z| ≤ ln(r(n − r) + 1) + 1

n − r

(
n

r

)
=: kn,r

Proof.

Take
Z :=

⋃
X∈D
ZX

where

D is a dominating set of J(E , r) with |D| ≤ ln(r(n−r)+1)+1
r(n−r)+1

(n
r

)
each ZX covers the non-bases in N({X}) ∪ {X}, with |ZX | ≤ r
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New upper bounds Better matroid compression

Finishing up

Theorem (Bansal, P. , van der Pol 2012)

logmn ≤ O

(
log2(n)

n

(
n

n/2

))
as n→∞

Proof.

Each matroid M = (E ,B) on n elements of rank r is determined by the set

{(F , rM(F )) : F ∈ Z} ⊆ 2E × {0, . . . , r − 1}

for some cover Z with |Z| ≤ kn,r . Hence

mn,r ≤
∑

j≤min{kn,r ,kn,n−r}

(
2nn

j

)
≤
(

2nn

kn,n/2

)kn,n/2

where kn,n/2 ≈
8 ln(n)
n2

( n
n/2

)
.
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New upper bounds

A newer upper bound

Theorem (Bansal, P. , van der Pol, 2012)

logmn ≤ O

(
log2(n)

n

(
n

n/2

))
as n→∞

Theorem (Bansal, P. , van der Pol, 2013)

logmn ≤ O

(
log(n)

n

(
n

n/2

))
as n→∞

Proof outline:

we use entropy to bound mn,r in terms of mn−t,r−t

we derive a bound on mn,2

putting together the two, we get a sufficient bound

Further applications: counting minor-closed classes and counting oriented matroids.
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New upper bounds

Entropy and counting

Let X be a random variable drawn from a finite set S with probability p ∈ RS
+

The entropy of X is

H(X ) :=
∑
s∈S

ps log(1/ps)

Lemma

max{
∑
s∈S

ps log(1/ps) : p a probability distribution on S} = log |S |

The maximum is attained by the uniform distribution, i.e. ps = |S |−1 for all s ∈ S ; then

H(X ) =
∑
s∈S

ps log(1/ps) = log |S |

To bound |S | is to bound the entropy of the random variable X drawn uniformly from S
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New upper bounds

Shearer’s Lemma

If S = S1 × · · · × Sm, and X is drawn from S , then X is a vector with entries Xi ∈ Si .

For a set A ⊆ [m], we denote the restriction of X to A by XA := (Xi )i∈A

If X is drawn according to p, then XA is drawn according to pA where

pA(Y ) =
∑

XA=Y

p(X )

Definition

A collection of sets A ⊆ 2[m] is a k-cover if each i ∈ [m] is in ≥ k sets from A.

Theorem (Shearer)

Suppose X is a random variable drawn from S = S1 × · · · × Sm. Let A be a k-cover of [m].
Then

kH(X ) ≤
∑
A∈A

H(XA)
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New upper bounds

An application

Theorem (Shearer)

Suppose X is a random variable drawn from S = S1 × · · · × Sm. Let A be a k-cover of [m].
Then

kH(X ) ≤
∑
A∈A

H(XA)

Theorem

Let T ⊆ Z3 be a finite set of points. Let Ti := {πi (t) : t ∈ T}, where πi is the orthogonal
projection parallel to ei . Then |T |2 ≤ |T1| · |T2| · |T3|.

Proof.

Let X be the random variable drawn uniformly from T . Then by Shearer’s Lemma

2 log |T | = 2H(X ) ≤ H(X{2,3}) + H(X{1,3}) + H(X{1,2}) ≤ log |T1|+ log |T2|+ log |T3|.
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New upper bounds

Application to counting matroids

Lemma

log(1 + mn,r ) ≤ n

n − r
log(1 + mn−1,r )

Proof.

Let X be the random variable drawn uniformly from sets B ⊆
(E
r

)
satisfying base exchange.

We identify X with its indicator vector in {0, 1}(
E
r ).

Let Ae := {Y ∈
(E
r

)
: e 6∈ Y }. Then A := {Ae : e ∈ E} is an (n − r)-cover of

(E
r

)
XAe is a set of subsets from

(E−e
r

)
satisfying base exchange

By Shearer’s Lemma,

(n − r) log(1 + mn,r ) = (n − r)H(X ) ≤
∑
e∈E

H(XAe ) ≤ n log(1 + mn−1,r )
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New upper bounds

Finishing up

Theorem

log(1 + mn,r )/

(
n

r

)
≤ log(1 + mn−r+t,t)/

(
n − r + t

t

)
Lemma

1 + mn,2 ≤ (n + 1)n

Theorem (Bansal, P. , van der Pol, 2013)

logmn ≤ O

(
log(n)

n

(
n

n/2

))
as n→∞

Proof.

log(1 + mn,r )(n
r

) ≤ log(1 + mn−r+2,2)(n−r+2
2

) ≤ (n − r + 2) log(n − r + 3)

(n − r + 2)(n − r + 1)/2
=

2 log(n − r + 3)

n − r + 1
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New upper bounds

Matroids without a sparse paving minor

Conjecture (Mayhew, Newman, Welsh and Whittle, 2011)

If N is a fixed sparse paving matroid, then asymptotically almost all matroids have N as a
minor.

U2,k U3,6 P6 Q6 R6

Theorem (P., van der Pol, 2013)

If N = U2,k for some k ≥ 2, or if N is one of U3,6, P6, Q6 or R6, then

lim
n→∞

#{M ∈Mn : M does not have N as a minor}
#Mn

= 0.
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New upper bounds

Counting matroids in minor-closed classes

Theorem (P., van der Pol, 2013)

If N = U2,k for some k ≥ 2, or if N is one of U3,6, P6, Q6 or R6, then

lim
n→∞

#{M ∈Mn : M does not have N as a minor}
#Mn

= 0.

Lemma

If M is a simple matroid of rank 3 without U2,k minor, then |E (M)| ≤ k2.

Hence there are at most O(k2n) matroids on n elements of rank 3 without U2,k , hence

log(m′n,r + 1)(n
r

) ≤
log(m′n−r+3,3 + 1)(n−r+3

3

) ≤ O(1/n2)

which implies logm′n ≤ O(
( n
n/2

)
/n2) for the number of matroids without U2,k .
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New upper bounds

Counting oriented matroids

Let pn,r denote the number of oriented matroids on E = [n] of rank r. By entropy counting

log(1 + pn,r )/

(
n

r

)
≤ log(1 + pn−r+t,t)/

(
n − r + t

t

)

Theorem (Felsner& Valtr; Bern, Eppstein, Plasman &Yao)

0.1887n2 ≤ log pn,3 ≤ 1.085n2

So for each t ≥ 3 there is a ct such that log(1 +pn,t)/
(n
t

)
≤ ct/n, indeed ct ≤ ct−1 ≤ · · · ≤ c3.

Conjecture

Asymptotically almost all matroids are not orientable.

If we can show ct <
1
2 for some t, then the conjecture is proven. Perhaps t = 4 or t = 5?
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New upper bounds

Break
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Hard work

Where are we?

So far, we have

1

n

(
n

n/2

)
≤ log sn ≤ logmn ≤ O

(
log n

n

(
n

n/2

))
as n→∞

Where is the gap?

In what follows, we show:

Theorem (Bansal, P., van der Pol, 2012)

logmn ≤
2

n

(
n

n/2

)
(1 + o(1)) as n→∞

Theorem (P., van der Pol, 2014)

logmn = (1 + o(1)) log sn as n→∞
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Hard work Counting stable sets

A first bound on sn,r

For any graph G on N vertices, the number of stable sets i(G ) satisfies

2α(G) ≤ i(G ) ≤
α(G)∑
k=0

(
N

k

)
≤
(

eN

α(G )

)α(G)

Theorem (Hoffman)

Let G = (V ,E ) be d-regular, on N vertices, with smallest eigenvalue −λ. Then

α(G ) ≤ λ

d + λ
N

For G = J(n, r), we have d = r(n − r) and λ = r if r ≤ n/2. Hence

1

n

(
n

r

)
≤ log sn,r = log i(J(n, r)) ≤ 1

n − r + 1

(
n

r

)
log(e(n − r + 1))
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Hard work Counting stable sets

Counting stable sets in regular graphs

Let G = (V ,E ) be d-regular, on N vertices, with smallest eigenvalue −λ. Put

α :=
λ

d + λ
, σ :=

ln(d + 1)

d + λ

Theorem

i(G ) ≤ (
e

σ
)σN · 2αN

Lemma (Alon, Balogh, Morris, and Samotij)

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ σN and |A| ≤ αN
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Hard work Counting stable sets

Proof of the Lemma

Lemma (Alon, Balogh, Morris, and Samotij)

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ σN and |A| ≤ αN

Fix linear ordering < of V .

Construction of S ,A

Put A← V , S ← ∅
while |A| > αN:

let v be the <-maximal vertex among max. degree vertices in G [A]
if v ∈ U, put S ← S + v and A← A \ (N(v) + v)
if v 6∈ U, put A← A− v

The lemma is direct from this construction, except that |S | ≤ σN at termination.
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Hard work Counting stable sets

Why S is small..

Fix linear ordering < of V .

Construction of S ,A

Put A← V , S ← ∅
while |A| > αN:

let v be the <-maximal vertex among max. degree vertices in G [A]
if v ∈ U, put S ← S + v and A← A \ (N(v) + v)
if v 6∈ U, put A← A− v

Lemma (Alon&Chung; Haemers)

For any ε > 0, if |A| = (α + ε)N, then G [A] contains a vertex of degree at least ε(d + λ).

Corollary (Bansal, P., van der Pol)

At termination, |S | ≤ σN.
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Lemma (Alon, Balogh, Morris, and Samotij)

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ σN and |A| ≤ αN

Theorem

i(G ) ≤ (
e

σ
)σN · 2αN

Proof.

Let U ⊆ V (G ) be a stable set of G

pick S ,A as in the lemma; U is stable, so S ⊆ U ⊆ S ∪ A

i(G ) ≤ (# of possible S) · (# of possible A ∩ U given S) ≤

(
σN∑
k=0

(
N

k

))
· 2αN
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Bound on the number of sparse paving matroids

Theorem

log sn ≤
2

n

(
n

n/2

)
(1 + o(1)) as n→∞

Proof.

By the Theorem

sn,r = i(J(n, r)) ≤ (
e

σ
)σN · 2αN

where (for r ≤ n/2):

α =
1

n − r + 1
, σ =

ln(r(n − r) + 1)

r(n − r + 1)
, N =

(
n

r

)
The bound on sn =

∑
sn,r is dominated by r ≈ n/2. Then α ≈ 2

n , σ ≈
8 ln n
n2

.
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How about general matroids?

Lemma (Alon, Balogh, Morris, and Samotij)

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ σN and |A| ≤ αN

Consider a matroid M = (E ,B) of rank r .

To encode M, we put U =
(E
r

)
\ B and apply the Lemma to get S ,A. Then

S ⊆ U ⊆ S ∪ N(S) ∪ A

We have

mn,r ≤ (# of possible S) · (# of possible N(S) ∩ U) · (# of possible A ∩ U given S)
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Matroids have small local covers II

Let M = (E ,B) be a matroid of rank r . Let X ∈
(E
r

)
.

Lemma

There exists a set of flats ZX of M covering each dependent Y ∈ N(X ), such that |ZX | ≤ r .

Lemma

Suppose X is dependent.
There exists a set of flats ZX of M covering each dependent Y ∈ N(X ), such that |ZX | ≤ 2.

Proof.

If rM(X ) < r − 1, put ZX = {cl(X )}.
If rM(X ) = r − 1, X contains a unique circuit C , is disjoint from a unique cocircuit D.
Put ZX = {cl(C ),E \ D}
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Bound on the number of matroids

Theorem (Bansal, P., van der Pol , 2012)

logmn ≤
2

n

(
n

n/2

)
(1 + o(1)) as n→∞

Proof.

To encode M, we put U =
(E
r

)
\ B and apply the Lemma to get S ,A. Then

S ⊆ U ⊆ S ∪ N(S) ∪ A

The number of possible (S ,A ∩ U) is bounded as before.
For each X ∈ S , we make a local cover ZX s.t. |ZX | ≤ 2 and put

Z :=
⋃
X∈S
ZX

Then Z determines N(S)∩U, and |Z| ≤ 2|S | ≤ 2σN, bounding the number of N(S)∩U.
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In the proof, we encode U as a triple

S ,N(S) ∩ U,A ∩ U

there are ≤
∑σN

k=0

(N
k

)
≤ (e/σ)σN possibilities for S

there are ≤
∑2σN

k=0

(Nn
k

)
≤ (en/σ)2σN possibilities for N(S) ∩ U

there are ≤ 2αN possibilities for A ∩ U (given S)

The case r ≈ n/2 again dominates the bound, and then

α ≈ 2

n
, σ ≈ 8 ln n

n2

So the bottleneck is the bound on the number of possible A ∩ U.

Can we further compress A ∩ U to get a better bound?
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The neighborhood N(X ) in the Johnson graph

The sets RX (x) := {X − x + y : y ∈ E \ X} and CX (y) := {X − x + y : x ∈ X} are cliques.

· · ·

· · ·
· · ·

... ... ... ...

C
X (y)

C
X (y ′)

RX (x)

X − x + y X − x + y ′

y ∈ D
y ′ 6∈ D

x 6∈ C

· · ·

· · ·
· · ·

... ... ... ...

Lemma

Let M = (E ,B) be a matroid, let X ∈ U =
(E
r

)
\ B and x ∈ X 63 y . If RX (x) \ U 6= ∅ and

CX (y) \ U 6= ∅, then the set U ∩ N(X ) is determined by RX (x) ∩ U and CX (y) ∩ U.
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A better Lemma

Lemma (Alon, Balogh, Morris, and Samotij)

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ σN and |A| ≤ αN

For any fixed k we have this variant:

Lemma

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ (σ + α/k)N, |A| ≤ αN, max. degree in G [A] is < k
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Lemma

If U ⊆ V , then there exist sets S ,A ⊆ V such that

S ⊆ U ⊆ S ∪ N(S) ∪ A

S uniquely determines A

|S | ≤ (σ + α/k)N, |A| ≤ αN, ∆(G [A]) < k

Theorem (P., van der Pol, 2014)

logmn = (1 + o(1)) log sn as n→∞

· · ·

· · ·
· · ·

... ... ... ...

N(X ), X dependent

Proof.

To encode a matroid M = (E ,B) on n of rank r , we put U =
(E
r

)
\ B.

Apply the Lemma with k = min{r , n − r}. Then S ⊆ U ⊆ S ∪ N(S) ∪ A

As before a cover Z of size at most 2|S | determines N(S) ∩ U.

Pick a certain stable set T ⊆ A ∩ U. Then A ∩ U is determined by (S ,T ,Z).

Now logmn,r ≤ log(# of T ) + log(# of (S ,Z)) ≤ log sn,r + (relatively small)
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Last words

Conjecture

Asymptotically all matroids M on n elements have bn/2c ≤ r(M) ≤ dn/2e.

Theorem

There is a β so that asymptotically almost all sparse paving matroids M on n elements have

n/2− β
√
n ≤ r(M) ≤ n/2 + β

√
n

Corollary

There is a β′ so that asymptotically almost all matroids M on n elements have

n/2− β′
√
n ≤ r(M) ≤ n/2 + β′

√
n

We know virtually nothing about the similarity of adjacent Johnson graphs. E.g.

Conjecture

For any n and r < r ′ ≤ n/2, we have sn,r ≤ sn,r ′ .
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Thank you
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