Counting Matroids

Rudi Pendavingh

March 27, 2015
(1) Introduction to counting matroids

- A question
- Some early answers
- Conjectures
(2) New upper bounds
- Better matroid compression
- An entropy method
(3) Hard work
- Counting stable sets
- Matroid vs stable sets

How many matroids on a fixed ground set E exist?

Some names

$$
\begin{gathered}
{[n]:=\{1, \ldots, n\}} \\
m_{n}:=\#\{M \text { matroid }: E(M)=[n]\} \\
m_{n, r}:=\#\{M \text { matroid }: E(M)=[n], r(M)=r\}
\end{gathered}
$$

A naive upper bound

A matroid on E is determined by the set of its independent sets $\mathcal{I} \subseteq 2^{E}$. Hence

$$
m_{n} \leq 2^{2^{n}}
$$

Therefore,

$$
\log m_{n} \leq 2^{n}
$$

Logarithms are to the base 2 today.

A slightly less naive upper bound

A matroid on E of rank r is determined by bases $\mathcal{B} \subseteq\binom{E}{r}:=\{X \subseteq E:|X|=r\}$. Hence

$$
m_{n, r} \leq 2\binom{n}{r} \leq 2^{\binom{n}{\lfloor n / 2\rfloor}}
$$

Therefore $m_{n}=\sum_{r} m_{n, r} \leq(n+1) 2^{\left({ }_{\lfloor n / 2\rfloor}^{n}\right)}$, hence

$$
\log m_{n} \leq \log (n+1)+\binom{n}{\lfloor n / 2\rfloor} \leq O\left(2^{n} / \sqrt{n}\right) \text { as } n \rightarrow \infty
$$

Here we used that

$$
\frac{2^{n}}{\sqrt{n}} \sqrt{\frac{2}{\pi}}(1-o(1)) \leq\binom{ n}{\lfloor n / 2\rfloor} \leq \frac{2^{n}}{\sqrt{n}} \sqrt{\frac{2}{\pi}} \text { as } n \rightarrow \infty
$$

A faithful description of matroids..

Lemma

The following are equivalent for a matroid $M=(E, \mathcal{B})$ and a set $X \subseteq E$

- X is a dependent set of M
- there is a circuit C of M so that $C \subseteq X$
- there is a circuit C of M so that $\left|X \cap c_{M}(C)\right|>r_{M}(C)$

Each matroid M on a fixed ground set E is determined by the set

$$
\mathcal{K}(M):=\left\{\left(\mathrm{cl}_{M}(C), r_{M}(C)\right): C \text { a circuit of } M\right\}
$$

..which is more compressed

Each matroid M on a fixed ground set E is determined by the set

$$
\mathcal{K}(M):=\left\{\left(\mathrm{cl}_{M}(C), r_{M}(C)\right): C \text { a circuit of } M\right\}
$$

Lemma

If M is a matroid on n elements, then $|\mathcal{K}(M)| \leq 2^{n+1} /(n+1)$.

Proof.
For each circuit C, there are $|C|$ sets $Y \subseteq C$ of size $r_{M}(C)$ so that $\mathrm{cl}_{M}(Y)=\mathrm{cl}_{M}(C)$. Hence

$$
\#\left\{\left(\mathrm{cl}_{M}(C), r_{M}(C)\right): C \text { a circuit of } M, r_{M}(C)=i\right\} \leq\binom{ n}{i} /(i+1)
$$

Hence $|\mathcal{K}(M)|=\sum_{i<n}\binom{n}{i} /(i+1)=\sum_{i<n}\binom{n+1}{i+1} /(n+1)=2^{n+1} /(n+1)$.

Piff's upper bound on the number of matroids

Theorem (Piff, 1973)

$$
\log m_{n} \leq O\left(2^{n} \log (n) / n\right) \text { as } n \rightarrow \infty
$$

Proof.

Each matroid on n elements is determined by $\mathcal{K} \subseteq 2^{E} \times[n+1]$ of size $|\mathcal{K}| \leq 2^{n+1} /(n+1)$, so

$$
m_{n} \leq \sum_{i \leq 2^{n+1} /(n+1)}\binom{2^{n}(n+1)}{i} \leq\left(\frac{e 2^{n}(n+1)}{2^{n+1} /(n+1)}\right)^{2^{n+1} /(n+1)}
$$

and hence $\log m_{n} \leq\left(2^{n+1} /(n+1)\right) \cdot \log \left(e(n+1)^{2} / 2\right)$.
Here we used

$$
\sum_{i=0}^{k}\binom{n}{i} \leq\left(\frac{e n}{k}\right)^{k}
$$

Some bounds for well-known classes of matroids

What do we know about the number of matroids on n elements in various classes?

class	upper bound	\log u.b.
graphic matroids	$\binom{n+1}{2}^{n}$	$O(n \log n)$
binary matroids	$\left(2^{n}\right)^{n}$	n^{2}
GF(q)-representable matroids	$\left(q^{n}\right)^{n}$	$n^{2} \log q$
transversal matroids	$\left(2^{n}\right)^{n}$	n^{2}
real-representable matroids	$2^{n^{3}}$	n^{3}

Theorem (Alon, 1986)
The number of real-representable matroids of rank r on n elements is between

$$
n^{(r-1)^{2} n-O\left(r^{2} n(\log r+\log \log n) /(\log n)\right.} \text { and } n^{r(r-1) n+O(n r \log \log n / \log n)} \text {. }
$$

No construction within these classes will yield a lower bound near Piff's upper bound.

Paving matroids

Definition

A matroid M is paving if $|C| \geq r(M)$ for each circuit C of M.

Crapo and Rota (1970) consider it likely that paving matroids
" ... would actually predominate in any asymptotic enumeration of geometries"
based on the enumeration of matroids up to 8 elements (Blackburn, Crapo, and Higgs).

Definition

A matroid M is sparse paving if both M and M^{*} are paving.
If almost all matroids are paving, then almost all matroids are sparse paving.

Sparse paving matroids

Lemma

Let $0<r<|E|$ and let $\mathcal{B} \subseteq\binom{E}{r}:=\{X \subseteq E:|X|=r\}$. The following are equivalent:
(1) $M=(E, \mathcal{B})$ is a sparse paving matroid
(2) $|X \triangle Y|>2$ for all distinct $X, Y \in\binom{E}{r} \backslash \mathcal{B}$

Proof.
$(1) \Rightarrow(2):$ if $X, Y \in\binom{E}{r} \backslash \mathcal{B}$ and $|X \triangle Y|=2$, then

$$
2(r-1) \geq r(X)+r(Y) \geq r(X \cup Y)+r(X \cap Y)
$$

so that either $r(X \cap Y)<r-1$ or $r(X \cup Y)<r$.
In either case $M=(E, \mathcal{B})$ is not sparse paving.

Sparse paving matroids

Lemma

Let $0<r<|E|$ and let $\mathcal{B} \subseteq\binom{E}{r}:=\{X \subseteq E:|X|=r\}$. The following are equivalent:
(1) $M=(E, \mathcal{B})$ is a sparse paving matroid
(2) $|X \triangle Y|>2$ for all distinct $X, Y \in\binom{E}{r} \backslash \mathcal{B}$

Proof.
$(2) \Rightarrow(1)$: Suppose (2) holds. If M were not a matroid, then

$$
\exists B, B^{\prime} \in \mathcal{B}, \exists e \in B \backslash B^{\prime}, \forall f \in B^{\prime} \backslash B: B-e+f \notin \mathcal{B}
$$

Pick $f, f^{\prime} \in B^{\prime} \backslash B$ distinct, then $X:=B-e+f, Y:=B-e+f^{\prime}$ violate (2), contradiction. If D is a dependent set of size $|D|=r-1$, then $X:=D+e, Y:=D+f$ violate (2), contradiction. So M is paving and the dual argument shows that M^{*} is also paving.

The Johnson graph

The Johnson graph $J(E, r)$ is the undirected graph with vertices

$$
V(J(E, r))=\binom{E}{r}:=\{X \subseteq E:|X|=r\}
$$

and edges

$$
E(J(E, r))=\{X Y:|X \triangle Y|=2\}
$$

We put $J(n, r):=J([n], r)$.

$J(4,2)$

Lemma
S is a stable set of $J(E, r) \Longleftrightarrow M=\left(E,\binom{E}{r} \backslash S\right)$ is a sparse paving matroid

More names

$$
\begin{gathered}
s_{n}:=\#\{M \text { sparse paving matroid }: E(M)=[n]\} \\
s_{n, r}:=\#\{M \text { sparse paving matroid }: E(M)=[n], r(M)=r\}
\end{gathered}
$$

$s_{n, r}$ equals the number of stable sets of $J(n, r)$

Knuth's lower bound on the number of matroids

Let $\alpha(G):=\max \{|S|: S \subseteq V(G)$ a stable set of $G\}$.
Theorem (Knuth, 1974)

$$
\log s_{n, r} \geq \alpha(J(n, r))
$$

Proof.
$J(n, r)$ has a stable set S_{0} of size $\alpha(J(n, r))$. Each $S \subseteq S_{0}$ is a stable set of $J(n, r)$, so that

$$
s_{n, r} \geq 2^{\left|s_{0}\right|}=2^{\alpha(J(n, r))}
$$

In 1974, this gave the lower bound

$$
\log m_{n} \geq \log s_{n} \geq \log s_{n, n / 2} \geq \alpha(J(n, n / 2)) \geq\binom{ n}{n / 2} /(2 n)
$$

An improvement of Knuth's bound

Theorem (Graham \& Sloane, 1980)
$J(n, r)$ has a stable set of size $\binom{n}{r} / n$.

Proof.
For each $k \in \mathbb{Z}$, the set

$$
S(n, r, k):=\left\{X \in\binom{[n]}{r}: \sum_{x \in X} x=k \quad \bmod n\right\}
$$

is stable in $J(n, r)$. Since $\bigcup_{k=1}^{n} S(n, r, k)=\binom{[n]}{r}$, we have $|S(n, r, k)|>\binom{n}{r} / n$ for some k.
And so we obtain

$$
\log m_{n} \geq \log s_{n, n / 2} \geq \alpha(J(n, n / 2)) \geq\binom{ n}{n / 2} / n
$$

Conjectures on matroid asymptotics

We say that 'asymptotically almost all matroids have property \mathcal{P} ' if

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{M \in \mathbb{M}_{n}: M \text { has property } \mathcal{P}\right\}}{\# \mathbb{M}_{n}}=1
$$

Here \mathbb{M}_{n} denotes the set of matroids with ground set $\{1, \ldots, n\}$.
Conjecture (Mayhew, Newman, Welsh and Whittle, 2011)

- Asymptotically almost all matroids are sparse paving.
- If N is a fixed sparse paving matroid, then a.a.a. matroids have N as a minor.
- Asymptotically almost all matroids M on n elements have $\left\lfloor\frac{n}{2}\right\rfloor \leq r(M) \leq\left\lceil\frac{n}{2}\right\rceil$.
- Let $k \in \mathbb{N}$. Asymptotically almost all matroids are k-connected.

Theorem (Oxley, Semple, Warshauer, Welsh, 2011)
Asymptotically almost all matroids are 3-connected.

Inspiration from matroid computation

Since 2012, the computer algebra system Sage contains a matroid package (P. \& van Zwam). The development of this package raised the following problem:

How to store a general matroid on n elements as concise as possible, but so that the rank oracle takes poly(n) time?

We settled on the BasisMatroid:

- stores a matroid on E elements of rank r as a the indicator function of its bases $\mathcal{B} \subseteq\binom{E}{r}$; the length of this description is $\binom{n}{r}$ bits.
- the rank oracle takes poly(n) time

We also still use the more human-friendly CircuitClosuresMatroid:

- stores a matroid M using Piff's compact description $\mathcal{K}(M):=\left\{\left(\mathrm{cl}_{M}(C), r_{M}(C)\right): C\right.$ a circuit of $\left.M\right\}$; the length of the data is $O\left(2^{n}\right)$
- the rank oracle does not run in poly(n) time from this data

Break

A new upper bound

Theorem (Piff, 1973)

$$
\log m_{n} \leq O\left(\frac{\log (n)}{n} 2^{n}\right) \text { as } n \rightarrow \infty
$$

Theorem (Bansal, P. , van der Pol, 2012)

$$
\log m_{n} \leq O\left(\frac{\log ^{2}(n)}{n}\binom{n}{n / 2}\right) \text { as } n \rightarrow \infty
$$

Proof outline:

- a cover of a matroid M gives a compressed description of M
- each n-element matroid of rank r has a cover of 'size' $\leq k_{n, r}$
- \# of matroids on n elements of rank r is \leq the \# of covers of size $\leq k_{n, r}$

We aim for $k_{n, r} \approx\binom{n}{r} / n \leq O\left(2^{n} / n^{3 / 2}\right)$.

Matroid covers

Let $M=(E, \mathcal{B})$ be a matroid of rank r.
Definition
Let $X \subseteq E$. A flat F of M covers X if $|F \cap X|>r_{M}(F)$.
A flat that covers X certifies that X is dependent.

Definition
A collection $\mathcal{Z} \subseteq \mathcal{F}(M)$ covers M if

$$
\text { for all } X \in\binom{E}{r} \backslash \mathcal{B} \text {, there exists } F \in \mathcal{Z} \text { covering } X
$$

If \mathcal{Z} covers M, then $\left\{\left(F, r_{M}(F)\right): F \in \mathcal{Z}\right\}$ determines M.

Matroids have small local covers

Let $M=(E, \mathcal{B})$ be a matroid of rank r. Let $X \in\binom{E}{r}$.
Lemma
There exists a $\mathcal{Z}_{X} \subseteq \mathcal{F}(M)$ such that

- $\left|\mathcal{Z}_{X}\right| \leq r$ and
- \mathcal{Z}_{X} covers each dependent $Y \in\binom{E}{r} \backslash \mathcal{B}$ such that $|Y \triangle X| \leq 2$

Proof.
Take

$$
\mathcal{Z}_{X}:=\left\{\mathrm{cl}_{M}(X-x): x \in X\right\}
$$

If $Y=X-x+y$ and $\mathrm{cl}_{M}(X-x)$ does not cover Y, then

$$
r-1=|X-x| \leq\left|\operatorname{cl}_{M}(X-x) \cap Y\right| \leq r_{M}\left(\operatorname{cl}_{M}(X-x)\right) \leq r-1
$$

So $r_{M}(X-x)=r-1$ and $y \notin \mathrm{cl}_{M}(X-x)$, hence $r_{M}(X-x+y)=r$, i.e. Y independent.

$J(n, r)$ has a small dominating set

Let $G=(V, E)$ be a graph. A set $D \subseteq V$ is dominating if

$$
D \cup N(D)=V
$$

where $N(D):=\{v \in V \backslash D: d \in D, d v \in E\}$
Theorem (Lovász, 1975)
If $G=(V, E)$ is d-regular, then G has a dominating set $D \subseteq V$ with

$$
|D| \leq \frac{\ln (d+1)+1}{d+1}|V|
$$

Corollary
The Johnson graph $J(n, r)$ has a dominating set D with

$$
|D| \leq \frac{\ln (r(n-r)+1)+1}{r(n-r)+1}\binom{n}{r}
$$

Matroids have small covers

Theorem

Let $M=(E, \mathcal{B})$ be a matroid of rank r, with $n=|E|$. Then M has a cover \mathcal{Z} such that

$$
|\mathcal{Z}| \leq \frac{\ln (r(n-r)+1)+1}{n-r}\binom{n}{r}=: k_{n, r}
$$

Proof.
Take

$$
\mathcal{Z}:=\bigcup_{X \in D} \mathcal{Z}_{X}
$$

where

- D is a dominating set of $J(E, r)$ with $|D| \leq \frac{\ln (r(n-r)+1)+1}{r(n-r)+1}\binom{n}{r}$
- each \mathcal{Z}_{X} covers the non-bases in $N(\{X\}) \cup\{X\}$, with $\left|\mathcal{Z}_{X}\right| \leq r$

Finishing up

Theorem (Bansal, P. , van der Pol 2012)

$$
\log m_{n} \leq O\left(\frac{\log ^{2}(n)}{n}\binom{n}{n / 2}\right) \text { as } n \rightarrow \infty
$$

Proof.

Each matroid $M=(E, \mathcal{B})$ on n elements of rank r is determined by the set

$$
\left\{\left(F, r_{M}(F)\right): F \in \mathcal{Z}\right\} \subseteq 2^{E} \times\{0, \ldots, r-1\}
$$

for some cover \mathcal{Z} with $|\mathcal{Z}| \leq k_{n, r}$. Hence

$$
m_{n, r} \leq \sum_{j \leq \min \left\{k_{n, r}, k_{n, n-r}\right\}}\binom{2^{n} n}{j} \leq\left(\frac{2^{n} n}{k_{n, n / 2}}\right)^{k_{n, n / 2}}
$$

where $k_{n, n / 2} \approx \frac{8 \ln (n)}{n^{2}}\binom{n}{n / 2}$.

A newer upper bound

Theorem (Bansal, P. , van der Pol, 2012)

$$
\log m_{n} \leq O\left(\frac{\log ^{2}(n)}{n}\binom{n}{n / 2}\right) \text { as } n \rightarrow \infty
$$

Theorem (Bansal, P. , van der Pol, 2013)

$$
\log m_{n} \leq O\left(\frac{\log (n)}{n}\binom{n}{n / 2}\right) \text { as } n \rightarrow \infty
$$

Proof outline:

- we use entropy to bound $m_{n, r}$ in terms of $m_{n-t, r-t}$
- we derive a bound on $m_{n, 2}$
- putting together the two, we get a sufficient bound

Further applications: counting minor-closed classes and counting oriented matroids.

Entropy and counting

Let X be a random variable drawn from a finite set S with probability $p \in \mathbb{R}_{+}^{S}$
The entropy of X is

$$
H(X):=\sum_{s \in S} p_{s} \log \left(1 / p_{s}\right)
$$

Lemma

$$
\max \left\{\sum_{s \in S} p_{s} \log \left(1 / p_{s}\right): p \text { a probability distribution on } S\right\}=\log |S|
$$

The maximum is attained by the uniform distribution, i.e. $p_{s}=|S|^{-1}$ for all $s \in S$; then

$$
H(X)=\sum_{s \in S} p_{s} \log \left(1 / p_{s}\right)=\log |S|
$$

To bound $|S|$ is to bound the entropy of the random variable X drawn uniformly from S

Shearer's Lemma

- If $S=S_{1} \times \cdots \times S_{m}$, and X is drawn from S, then X is a vector with entries $X_{i} \in S_{i}$.
- For a set $A \subseteq[m]$, we denote the restriction of X to A by $X_{A}:=\left(X_{i}\right)_{i \in A}$
- If X is drawn according to p, then X_{A} is drawn according to p_{A} where

$$
p_{A}(Y)=\sum_{X_{A}=Y} p(X)
$$

Definition

A collection of sets $\mathcal{A} \subseteq 2^{[m]}$ is a k-cover if each $i \in[m]$ is in $\geq k$ sets from \mathcal{A}.

Theorem (Shearer)

Suppose X is a random variable drawn from $S=S_{1} \times \cdots \times S_{m}$. Let \mathcal{A} be a k-cover of $[m]$. Then

$$
k H(X) \leq \sum_{A \in \mathcal{A}} H\left(X_{A}\right)
$$

An application

Theorem (Shearer)
Suppose X is a random variable drawn from $S=S_{1} \times \cdots \times S_{m}$. Let \mathcal{A} be a k-cover of $[m]$. Then

$$
k H(X) \leq \sum_{A \in \mathcal{A}} H\left(X_{A}\right)
$$

Theorem
Let $T \subseteq \mathbb{Z}^{3}$ be a finite set of points. Let $T_{i}:=\left\{\pi_{i}(t): t \in T\right\}$, where π_{i} is the orthogonal projection parallel to e_{i}. Then $|T|^{2} \leq\left|T_{1}\right| \cdot\left|T_{2}\right| \cdot\left|T_{3}\right|$.

Proof.
Let X be the random variable drawn uniformly from T. Then by Shearer's Lemma

$$
2 \log |T|=2 H(X) \leq H\left(X_{\{2,3\}}\right)+H\left(X_{\{1,3\}}\right)+H\left(X_{\{1,2\}}\right) \leq \log \left|T_{1}\right|+\log \left|T_{2}\right|+\log \left|T_{3}\right| .
$$

Application to counting matroids

Lemma

$$
\log \left(1+m_{n, r}\right) \leq \frac{n}{n-r} \log \left(1+m_{n-1, r}\right)
$$

Proof.

Let X be the random variable drawn uniformly from sets $\mathcal{B} \subseteq\binom{E}{r}$ satisfying base exchange. We identify X with its indicator vector in $\{0,1\}\binom{E_{r}^{E}}{r}$.

- Let $A_{e}:=\left\{Y \in\binom{E}{r}: e \notin Y\right\}$. Then $\mathcal{A}:=\left\{A_{e}: e \in E\right\}$ is an $(n-r)$-cover of $\binom{E}{r}$
- $X_{A_{e}}$ is a set of subsets from $\binom{E-e}{r}$ satisfying base exchange
- By Shearer's Lemma,

$$
(n-r) \log \left(1+m_{n, r}\right)=(n-r) H(X) \leq \sum_{e \in E} H\left(X_{A_{e}}\right) \leq n \log \left(1+m_{n-1, r}\right)
$$

Finishing up

Theorem

$$
\log \left(1+m_{n, r}\right) /\binom{n}{r} \leq \log \left(1+m_{n-r+t, t}\right) /\binom{n-r+t}{t}
$$

Lemma

$$
1+m_{n, 2} \leq(n+1)^{n}
$$

Theorem (Bansal, P. , van der Pol, 2013)

$$
\log m_{n} \leq O\left(\frac{\log (n)}{n}\binom{n}{n / 2}\right) \text { as } n \rightarrow \infty
$$

Proof.

$$
\frac{\log \left(1+m_{n, r}\right)}{\binom{n}{r}} \leq \frac{\log \left(1+m_{n-r+2,2}\right)}{\binom{n-r+2}{2}} \leq \frac{(n-r+2) \log (n-r+3)}{(n-r+2)(n-r+1) / 2}=\frac{2 \log (n-r+3)}{n-r+1}
$$

Matroids without a sparse paving minor

Conjecture (Mayhew, Newman, Welsh and Whittle, 2011)
If N is a fixed sparse paving matroid, then asymptotically almost all matroids have N as a minor.

Theorem (P., van der Pol, 2013) If $N=U_{2, k}$ for some $k \geq 2$, or if N is one of $U_{3,6}, P_{6}, Q_{6}$ or R_{6}, then

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{M \in \mathbb{M}_{n}: M \text { does not have } N \text { as a minor }\right\}}{\# \mathbb{M}_{n}}=0
$$

Counting matroids in minor-closed classes

Theorem (P., van der Pol, 2013)
If $N=U_{2, k}$ for some $k \geq 2$, or if N is one of $U_{3,6}, P_{6}, Q_{6}$ or R_{6}, then

$$
\lim _{n \rightarrow \infty} \frac{\#\left\{M \in \mathbb{M}_{n}: M \text { does not have } N \text { as a minor }\right\}}{\# \mathbb{M}_{n}}=0
$$

Lemma

If M is a simple matroid of rank 3 without $U_{2, k}$ minor, then $|E(M)| \leq k^{2}$.
Hence there are at most $O\left(k^{2 n}\right)$ matroids on n elements of rank 3 without $U_{2, k}$, hence

$$
\frac{\log \left(m_{n, r}^{\prime}+1\right)}{\binom{n}{r}} \leq \frac{\log \left(m_{n-r+3,3}^{\prime}+1\right)}{\binom{n-r+3}{3}} \leq O\left(1 / n^{2}\right)
$$

which implies $\log m_{n}^{\prime} \leq O\left(\binom{n}{n / 2} / n^{2}\right)$ for the number of matroids without $U_{2, k}$.

Counting oriented matroids

Let $p_{n, r}$ denote the number of oriented matroids on $E=[n]$ of rank r. By entropy counting

$$
\log \left(1+p_{n, r}\right) /\binom{n}{r} \leq \log \left(1+p_{n-r+t, t}\right) /\binom{n-r+t}{t}
$$

Theorem (Felsner\& Valtr; Bern, Eppstein, Plasman \&Yao)

$$
0.1887 n^{2} \leq \log p_{n, 3} \leq 1.085 n^{2}
$$

So for each $t \geq 3$ there is a c_{t} such that $\log \left(1+p_{n, t}\right) /\binom{n}{t} \leq c_{t} / n$, indeed $c_{t} \leq c_{t-1} \leq \cdots \leq c_{3}$. Conjecture
Asymptotically almost all matroids are not orientable.
If we can show $c_{t}<\frac{1}{2}$ for some t, then the conjecture is proven. Perhaps $t=4$ or $t=5$?

Break

Where are we?

So far, we have

$$
\frac{1}{n}\binom{n}{n / 2} \leq \log s_{n} \leq \log m_{n} \leq O\left(\frac{\log n}{n}\binom{n}{n / 2}\right) \text { as } n \rightarrow \infty
$$

Where is the gap?
In what follows, we show:
Theorem (Bansal, P., van der Pol, 2012)

$$
\log m_{n} \leq \frac{2}{n}\binom{n}{n / 2}(1+o(1)) \text { as } n \rightarrow \infty
$$

Theorem (P., van der Pol, 2014)

$$
\log m_{n}=(1+o(1)) \log s_{n} \text { as } n \rightarrow \infty
$$

A first bound on $s_{n, r}$

For any graph G on N vertices, the number of stable sets $i(G)$ satisfies

$$
2^{\alpha(G)} \leq i(G) \leq \sum_{k=0}^{\alpha(G)}\binom{N}{k} \leq\left(\frac{e N}{\alpha(G)}\right)^{\alpha(G)}
$$

Theorem (Hoffman)

Let $G=(V, E)$ be d-regular, on N vertices, with smallest eigenvalue $-\lambda$. Then

$$
\alpha(G) \leq \frac{\lambda}{d+\lambda} N
$$

For $G=J(n, r)$, we have $d=r(n-r)$ and $\lambda=r$ if $r \leq n / 2$. Hence

$$
\frac{1}{n}\binom{n}{r} \leq \log s_{n, r}=\log i(J(n, r)) \leq \frac{1}{n-r+1}\binom{n}{r} \log (e(n-r+1))
$$

Counting stable sets in regular graphs

Let $G=(V, E)$ be d-regular, on N vertices, with smallest eigenvalue $-\lambda$. Put

$$
\alpha:=\frac{\lambda}{d+\lambda}, \sigma:=\frac{\ln (d+1)}{d+\lambda}
$$

Theorem

$$
i(G) \leq\left(\frac{e}{\sigma}\right)^{\sigma N} \cdot 2^{\alpha N}
$$

Lemma (Alon, Balogh, Morris, and Samotij)
If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq \sigma N$ and $|A| \leq \alpha N$

Proof of the Lemma

Lemma (Alon, Balogh, Morris, and Samotij)
If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq \sigma N$ and $|A| \leq \alpha N$

Fix linear ordering $<$ of V.
Construction of S, A

- Put $A \leftarrow V, S \leftarrow \emptyset$
- while $|A|>\alpha N$:
- let v be the <-maximal vertex among max. degree vertices in $G[A]$
- if $v \in U$, put $S \leftarrow S+v$ and $A \leftarrow A \backslash(N(v)+v)$
- if $v \notin U$, put $A \leftarrow A-v$

The lemma is direct from this construction, except that $|S| \leq \sigma N$ at termination.

Why S is small..

Fix linear ordering < of V.
Construction of S, A

- Put $A \leftarrow V, S \leftarrow \emptyset$
- while $|A|>\alpha N$:
- let v be the <-maximal vertex among max. degree vertices in $G[A]$
- if $v \in U$, put $S \leftarrow S+v$ and $A \leftarrow A \backslash(N(v)+v)$
- if $v \notin U$, put $A \leftarrow A-v$

Lemma (Alon\&Chung; Haemers)
For any $\varepsilon>0$, if $|A|=(\alpha+\varepsilon) N$, then $G[A]$ contains a vertex of degree at least $\varepsilon(d+\lambda)$.
Corollary (Bansal, P., van der Pol)
At termination, $|S| \leq \sigma N$.

Lemma (Alon, Balogh, Morris, and Samotij)
If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq \sigma N$ and $|A| \leq \alpha N$

Theorem

$$
i(G) \leq\left(\frac{e}{\sigma}\right)^{\sigma N} \cdot 2^{\alpha N}
$$

Proof.

- Let $U \subseteq V(G)$ be a stable set of G
- pick S, A as in the lemma; U is stable, so $S \subseteq U \subseteq S \cup A$

$$
i(G) \leq(\# \text { of possible } S) \cdot(\# \text { of possible } A \cap U \text { given } S) \leq\left(\sum_{k=0}^{\sigma N}\binom{N}{k}\right) \cdot 2^{\alpha N}
$$

Bound on the number of sparse paving matroids

Theorem

$$
\log s_{n} \leq \frac{2}{n}\binom{n}{n / 2}(1+o(1)) \text { as } n \rightarrow \infty
$$

Proof.
By the Theorem

$$
s_{n, r}=i(J(n, r)) \leq\left(\frac{e}{\sigma}\right)^{\sigma N} \cdot 2^{\alpha N}
$$

where (for $r \leq n / 2$):

$$
\alpha=\frac{1}{n-r+1}, \sigma=\frac{\ln (r(n-r)+1)}{r(n-r+1)}, N=\binom{n}{r}
$$

The bound on $s_{n}=\sum s_{n, r}$ is dominated by $r \approx n / 2$. Then $\alpha \approx \frac{2}{n}, \sigma \approx \frac{8 \ln n}{n^{2}}$.

How about general matroids?

Lemma (Alon, Balogh, Morris, and Samotij)
If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq \sigma N$ and $|A| \leq \alpha N$

Consider a matroid $M=(E, \mathcal{B})$ of rank r.
To encode M, we put $U=\binom{E}{r} \backslash \mathcal{B}$ and apply the Lemma to get S, A. Then

$$
S \subseteq U \subseteq S \cup N(S) \cup A
$$

We have

$$
m_{n, r} \leq(\# \text { of possible } S) \cdot(\# \text { of possible } N(S) \cap U) \cdot(\# \text { of possible } A \cap U \text { given } S)
$$

Matroids have small local covers II

Let $M=(E, \mathcal{B})$ be a matroid of rank r. Let $X \in\binom{E}{r}$.
Lemma
There exists a set of flats \mathcal{Z}_{X} of M covering each dependent $Y \in N(X)$, such that $\left|\mathcal{Z}_{X}\right| \leq r$.

Lemma

Suppose X is dependent.
There exists a set of flats \mathcal{Z}_{X} of M covering each dependent $Y \in N(X)$, such that $\left|\mathcal{Z}_{X}\right| \leq 2$.
Proof.

- If $r_{M}(X)<r-1$, put $\mathcal{Z}_{X}=\{\mathrm{cl}(X)\}$.
- If $r_{M}(X)=r-1, X$ contains a unique circuit C, is disjoint from a unique cocircuit D.

$$
\text { Put } \mathcal{Z}_{X}=\{\mathrm{cl}(C), E \backslash D\}
$$

Bound on the number of matroids

Theorem (Bansal, P., van der Pol , 2012)

$$
\log m_{n} \leq \frac{2}{n}\binom{n}{n / 2}(1+o(1)) \text { as } n \rightarrow \infty
$$

Proof.
To encode M, we put $U=\binom{E}{r} \backslash \mathcal{B}$ and apply the Lemma to get S, A. Then

$$
S \subseteq U \subseteq S \cup N(S) \cup A
$$

The number of possible $(S, A \cap U)$ is bounded as before.
For each $X \in S$, we make a local cover \mathcal{Z}_{X} s.t. $\left|\mathcal{Z}_{X}\right| \leq 2$ and put

$$
\mathcal{Z}:=\bigcup_{X \in S} \mathcal{Z}_{X}
$$

Then \mathcal{Z} determines $N(S) \cap U$, and $|\mathcal{Z}| \leq 2|S| \leq 2 \sigma N$, bounding the number of $N(S) \cap U$.

In the proof, we encode U as a triple

$$
S, N(S) \cap U, A \cap U
$$

- there are $\leq \sum_{k=0}^{\sigma N}\binom{N}{k} \leq(e / \sigma)^{\sigma N}$ possibilities for S
- there are $\leq \sum_{k=0}^{2 \sigma N}\binom{N n}{k} \leq(e n / \sigma)^{2 \sigma N}$ possibilities for $N(S) \cap U$
- there are $\leq 2^{\alpha N}$ possibilities for $A \cap U$ (given S)

The case $r \approx n / 2$ again dominates the bound, and then

$$
\alpha \approx \frac{2}{n}, \sigma \approx \frac{8 \ln n}{n^{2}}
$$

So the bottleneck is the bound on the number of possible $A \cap U$.
Can we further compress $A \cap U$ to get a better bound?

The neighborhood $N(X)$ in the Johnson graph
The sets $R_{X}(x):=\{X-x+y: y \in E \backslash X\}$ and $C_{X}(y):=\{X-x+y: x \in X\}$ are cliques.

$$
x-x+y \quad X-x+y^{\prime}
$$

Lemma

Let $M=(E, \mathcal{B})$ be a matroid, let $X \in U=\binom{E}{r} \backslash \mathcal{B}$ and $x \in X \nexists y$. If $R_{X}(x) \backslash U \neq \emptyset$ and $C_{X}(y) \backslash U \neq \emptyset$, then the set $U \cap N(X)$ is determined by $R_{X}(x) \cap U$ and $C_{X}(y) \cap U$.

A better Lemma

Lemma (Alon, Balogh, Morris, and Samotij)
If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq \sigma N$ and $|A| \leq \alpha N$

For any fixed k we have this variant:
Lemma
If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq(\sigma+\alpha / k) N,|A| \leq \alpha N$, max. degree in $G[A]$ is $<k$

Lemma

If $U \subseteq V$, then there exist sets $S, A \subseteq V$ such that

- $S \subseteq U \subseteq S \cup N(S) \cup A$
- S uniquely determines A
- $|S| \leq(\sigma+\alpha / k) N,|A| \leq \alpha N, \Delta(G[A])<k$

Theorem (P., van der Pol, 2014) $\log m_{n}=(1+o(1)) \log s_{n}$ as $n \rightarrow \infty$

$N(X), X$ dependent

Proof.

- To encode a matroid $M=(E, \mathcal{B})$ on n of rank r, we put $U=\binom{E}{r} \backslash \mathcal{B}$.
- Apply the Lemma with $k=\min \{r, n-r\}$. Then $S \subseteq U \subseteq S \cup N(S) \cup A$
- As before a cover \mathcal{Z} of size at most $2|S|$ determines $N(S) \cap U$.
- Pick a certain stable set $T \subseteq A \cap U$. Then $A \cap U$ is determined by (S, T, \mathcal{Z}).
- Now $\log m_{n, r} \leq \log (\#$ of $T)+\log (\#$ of $(S, \mathcal{Z})) \leq \log s_{n, r}+\quad$ (relatively small)

Last words

Conjecture

Asymptotically all matroids M on n elements have $\lfloor n / 2\rfloor \leq r(M) \leq\lceil n / 2\rceil$.

Theorem

There is a β so that asymptotically almost all sparse paving matroids M on n elements have

$$
n / 2-\beta \sqrt{n} \leq r(M) \leq n / 2+\beta \sqrt{n}
$$

Corollary
There is a β^{\prime} so that asymptotically almost all matroids M on n elements have

$$
n / 2-\beta^{\prime} \sqrt{n} \leq r(M) \leq n / 2+\beta^{\prime} \sqrt{n}
$$

We know virtually nothing about the similarity of adjacent Johnson graphs. E.g.
Conjecture
For any n and $r<r^{\prime} \leq n / 2$, we have $s_{n, r} \leq s_{n, r^{\prime}}$.

Thank you

