30.04 Faces of polyherw (Unimodularity)
07.05 Unimodularity, Triangelations
14. $05 \rightarrow$ Ehrhart's theovem (integer-point-connting polqnomials)
(21.05)
28.0s Reserve/veview/questions \& C.

Polyludra / polytopes

$$
\left.\left.P=\left\{\begin{array}{cc}
\\
\mathbb{1} & 2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
\text { "Ax }
\end{array}\right] \leqslant \begin{array}{c}
8 \\
8 \\
-2
\end{array}\right]\right\} \longrightarrow \longrightarrow
$$

Def: A face of a pdyluedion $P=\{A x \leqslant b\}$ is
 any subset of P of the form

$$
F=\left\{x \in P \mid A^{\prime} x=b^{\prime}\right\}
$$

where " $A^{\prime} x \leq b^{\prime \prime}$ " is a subsystem

$$
\begin{aligned}
& A=\left\{x \in P \left\lvert\,\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
8 \\
-2
\end{array}\right)\right.\right\} \\
& B=\left\{x \in P \left\lvert\,\left[\begin{array}{ll}
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=-2\right.\right\}
\end{aligned}
$$

of $A x \leq b$ (i., only some rows)
$P=\{x \in P \mid 0 x=0\}$

Deft Let $P=\{A x \leq b\}$ pdyludron.
A hyperplane $H=\{c \cdot x=\delta\}$ is supporting hyperplane for P if

$\delta=\max \{C \cdot x \mid x \in P\} \quad$ "H touches B, P lies wholly on one side of H "

Ben: Every proper face of P is PaH for some supposing hyp. H.
If $F=\left\{x \in \mathbb{P} \mid A_{x}^{\prime}=b^{\prime}\right\}$ proper,
take $c=$ sum of all rows of A^{\prime},
then $F=\left\{\begin{array}{l}\text { points in } P \\ \text { attaining matimnm } \\ \text { max }\{c \times x \mid x \in P\}=\Sigma b^{\prime}\end{array}\right\}$

Coming up: "POH" "Face"

Lemma ("Parkas' Lemma") Let A matrix, b vector. Then:
There exists $x \geqslant 0$ s.t. $A x=b \Leftrightarrow\left\{\begin{array}{l}y b \geqslant 0 \text { for each row vector } \\ y \text { with } y A \geqslant 0\end{array}\right.$
Proof: " \Rightarrow ": if $x \geqslant 0, A x=b, y A \geqslant 0$, them $y b=\underset{\geqslant 0}{y A x} \geqslant 0$
$" \Leftarrow$ ": Contraposition: suppose there is no $x \geqslant 0$ with $A x=b$

Then, by
there is $y^{\prime \prime}$ with $y^{b}<0$
$\left[\left\|\left\|\|\|]_{\left.x^{1,}=\right]^{b}}^{A}\left\langle\sim b \in \operatorname{cone}\left\{a_{1} a_{i} \cdot\right\}\right.\right.\right.\right.$ and $\underbrace{y A \geqslant 0}_{[y]\left[| |_{a_{1} a_{2}} \ldots\right] \geqslant 0}$

$$
\Leftrightarrow \quad y a_{1} \geqslant 0
$$

 (1) $v=\lambda_{1} a_{1}+\cdots+\lambda_{1} a_{m}$ with $\lambda_{i=0}$
(2) There is $c \in \mathbb{R}^{n}$ s.t. c^{\perp} contains $(t-1) \ell_{i n}$. indef. vectors from $\left\{a_{1} \ldots a_{m}\right\}$ and s.t. $\frac{c \cdot v<0 \text { \& } c \cdot a_{1}, \ldots, c \cdot a_{m} \geqslant 0 \text {, where } t=\operatorname{dim}\left\langle a_{1}, \cdots a_{m}, v\right\rangle}{\text { (0) }}$

Corollary: Let A matrix, b vector.

$$
\{x \leqslant b \text { has solution }\} \Leftrightarrow\{y \geqslant 0 \quad \forall \quad y \geqslant 0 \text { with } y A=0\}
$$

Proof: - eff" ${ }_{(\rightarrow)}[1|A|-A]\left[\begin{array}{l}\frac{z_{0}}{z_{1}} \\ \frac{z_{2}}{z_{2}}\end{array}\right]=b \quad$ has nonveyertive solution"
Indeed :(1) let $\left[\frac{z_{0}}{\frac{z_{1}}{z_{2}}}\right)_{0}^{2} \geqslant 0$ solution, then $\frac{l_{0} \geqslant 0}{z_{0}+A z_{1}-A z_{2}=b}$

$$
\Rightarrow A\left(z_{1}-z_{2}\right) \leq b
$$

(2) Let $A x \leq b$

Apply Farkas to see that * has solution iff $y b \geqslant 0$ whenever $\quad y[\mathbb{1}|A|-A] \geqslant 0 . \quad \Leftrightarrow \geqslant 0, y A=0$

$$
=[y|y A|-y A] \geqslant 0 \Leftrightarrow y \geqslant 0, y A \geqslant 0,-y A \geqslant 0
$$

The Condlary was meant to prove:
Proposition Let A matrix, be vectors. Them

Proof: "max Smin" is a computation (asian previous corollary)

- For "max \geqslant min" need to show: there are x, y with:
... apply previous corollary.

Corollary: Let $P=\{A x \leq b\}$ polyhedron. Then F is proper face of P if and only it $\bar{F}=P \cap H$, H supporting hyperplane of P
Proof One diction already proved (Reward earlier: every face is " $T=P \cap H^{\prime \prime}$) The other: Let $F=P \cap H$ with $H=\{c \cdot x=5\} \quad \max \left\{c x \mid x e^{P}\right\}$

Now by the Proposition: $\delta=\min \{y b \mid \geqslant \geqslant 0, y A=c\}$,
choose y_{0} attaining minimum ρ
Choose from the rows in $A x \leq b$ those corresponding to positive entries of y_{0} to form the system $A^{\prime} x \leq b^{\prime}$.
Claim: $\quad E=\left\{x \in P \mid A^{\prime} x=b^{\prime}\right\}$.
Pool: in P always $A x \leqslant b$, thess $c \cdot x=\delta$ weans $y_{0} A x=y_{0} b, \leftarrow$ which differs from $A^{\prime} x=b^{\prime}$ by zero runs (recall $y \geqslant 0$).

Faces of polfudre.
Def A facet is any matimal proper face.

Let $P=\left\{A x \leq b\right.$, say $\left.\begin{array}{ll}a_{x} x \leq b_{1} \\ a_{m x} x \leq b_{m}\end{array}\right\}$, so: $P=\bigcap_{i=1}^{m}\left\{a_{i} x \leq b_{i}\right\}$

$$
a_{i} \text { now of } A
$$

An inequality $a_{i} x \leq b_{i}$ is called an implicit equality if $P \leq a_{i} \times=b_{i}$) otheneise: effective inequality.
Reward (1) Every face $F=\left\{x \in P \mid A^{\prime} x \neq b^{\prime}\right\}$ can be unittme $F=\left\{\left.\frac{x \in P}{\frac{1}{4}} \right\rvert\, \widetilde{A^{\prime+} x} x \leq b^{\prime+}\right\}$ -already express
the implicit eq.
Notation: $A^{=} x \leq b^{=}$subsystem of implicit equalities
$A^{+} \times \leq b^{+}$ effective inequalities.

Remark (2) If $A x \leq b$ has an effective inequality $a_{i} x \leq b_{i}$, then there is Some $x \in \mathbb{P} \backslash\left\{a_{i} x=b_{i}\right\}$, and in particular this x has $A^{=} x=b^{=}$and $A_{x<b^{+}}$

Def: an inequality redmedant if removing it does not change P (ie. the sot of solutions)

Lamer: Let $a_{i} x \leq b_{i}$ effective, ivedundant.

Then $\bar{F}=\left\{x \in P \mid a_{i} x=b_{i}\right\}$ is facet of P
Proof: Let $A^{\prime} x \leq b^{\prime}$ system of all effective in. other than $a_{1} x \leq b^{\prime}$, Enough to find x_{0} s.t. $A^{\prime} x_{0}=b^{\prime}, A^{\prime} x_{0}<b^{\prime}, a_{i} x_{0}=b_{i}$.

- from (2): I x_{1} s.t. $A^{-} x_{1}=b^{=}, A^{+} x_{1}<b^{+} \rightarrow a_{i} x_{1}<b_{i}$.

Proposition Every face of a podyledion $P=\{A x \leq b\}$ is an interaction of facets.

Let's tall vertices.
Lumen A poblyedion P is an affine subspace rf it has no noneughty faces except T itself.

Pf: P aft. subs pace $\leftrightarrow P=\left\{M_{x}=v\right\}$ for some matrix Γ, some vector r. then $\left.P=\left[\begin{array}{c}M \\ -M\end{array}\right] x \leq\left[\begin{array}{c}v \\ -v\end{array}\right)\right\}$, and every point
of P satisfies any subsystem $A^{\prime} x \leqslant b^{\prime}$ with equality, \Rightarrow no(voneyty)fans except op itself.

Other direction: if $P=\{A x \leq B\}$ has no popper ta, them in particular $P=\{A x=b\}$ is an affine subspace
Conollany 1 the minimal non-engty faces of a poblidedron are affine subspaces!

Conollany 1 the minimal non-engty faces of a poblydron are affine subspaces!
Corollary 2 The minimal non-engty faces of a convex pobytopa P ave points (i.e. affine subspaces of dim. O); and they are culled the vertices of P

Definition Call a pobytope $P \subseteq \mathbb{R}^{n} \mid \overline{\text { integral }}$ if all its vertices are points in $\mathbb{Z}^{n} \subseteq \mathbb{R}^{n}$, rational if all vertices are in $Q^{n} \subseteq \mathbb{R}^{4}$

Question: Given $P=\{A x \leqslant b\}$ polytope;
 determine whether $?$ is integral.
\longrightarrow In order to tackle this, we lock at totally unimodular matinees

Bel: A matrix A with entries in \mathbb{Z} is called totally uninnolular if every square minor of A has determinant $0,1,-1$.

Well want to look at incidence

\rightarrow square minor of \mathbb{A} matrices of gonphs (these have entries $0,1,-1$)
Proposition: Let A be a matrix with entries from $\{0, \pm 1\}$ and such that every colemmen contains exactly one 1 and one -1 .
Them A is totally nnimodulan.
Pool. Choose a square minor M from A. Induction on site of 17 If M size 1. trivial. Suppose M size >1.
(1) T has ar all-zuro cole.
(2) M has a colum with exactly one nonzero entry \rightarrow dome by ind.hyp. after developing w.v.t. the nt column
(3) Otlurwise every colum has exactly $a+1$ and $a-1$, and so the sum of all rows is $0!\Rightarrow$ get (M) is O.

WHY CARE?
Theorem: For an integral matrix A, the following are equivalent:
(i) A is totally unimedular
(ii) The polyludiom $\{A x \leq b, x \geqslant 0\}$ is integral for all b.
(iii)" " $\{a \leq A x \leq b, c \leq x \leq d\}$ has only integral vestica, for all a, b, c, d.
(west time).

