Combinatorial polynomials - gapnil 2020
IV. I Prove: $\pi^{(r 2)} r(*)+r(B) \geqslant r(A \cap B)+r(A \cup B) \quad \forall A, B \leq E$
$\left(v 2^{\prime}\right) \quad r(\underline{X \cup e})+r(X \cup f) \geqslant r(X)+r(X \cup\{, f f\}) \quad \forall X \leq \bar{E}, e f \in E$
"॥" trivial
" \uparrow " Assume ($\left(2^{\prime}\right)$), consider $A, B \in E$. Induction on $|A \cup B|$

- If $A \in B$ or $B \subseteq A$, nothing to show: $A \cap B \equiv A, A \cup B=B$
- Otherwise let $a \in A \backslash B$, set $\left.A^{\prime}:=A \backslash a\right\}$; let $b \in B \backslash A$, set $B^{\prime}:=B \backslash\{b\}$
(ra') says $\quad r\left(A^{\prime} \cup B\right)+r\left(A \cup B^{\prime}\right) \geqslant r\left(A^{\prime} \cup B^{\prime}\right)+r(A \cup B)$
$\left.\left(A^{\prime} \cup B\right) \cap\left(A \cup J^{\prime}\right) \quad R\left(A^{\prime} \cup B\right) \cup(A \cup\}^{\prime}\right)$
\Longrightarrow Case study: (1) $r(A \cup B)-r\left(A \cup z^{\prime}\right)=0$
(2) $r(A \cup B)-r\left(A^{\prime} \cup B\right)=0$
(3) Otherwise...
IV. $2 \rightarrow$ Later.

Review: Signed graphs
"regular"
edges, with sign $\sigma(e)$
$x \longmapsto$ hals-edges.

$$
b(a)=2
$$

$b(G)$: \# of balanced components nohalf-edges, "pry on circuit "positive"
For $A \leq \bar{E} \quad b(A):=b(G[A])$
Surprise: $V_{\Sigma}: 2^{E} \rightarrow \mathbb{N} \quad V_{\Sigma}(A)=\binom{$ \#vertices }{ of $G}-b(A)$ is a mattoid rank function!
k-colonings: "colons" $\{-k, \ldots,-1,0,1, \ldots, k\}$, rule: Ends of halfedyes
(Siqued) cluonatic polynomial:

$$
\begin{aligned}
X_{\Sigma}(t) & =\sum_{A S E}(-1)^{\prime A 1} t^{b(A)} \\
& \frac{\theta}{4}(-1)^{\# V} t^{b(E)} T_{r_{\Sigma}}(1-t, 0)
\end{aligned}
$$

usual yoga
not colored 0 ,

- $\operatorname{codor}(h(e)) \neq$ $\sigma(e)$ color $(t(e))$ Goral regular edges e

A rangenents from signed grapples
Regular gruples: Edge $v_{1} e^{e v_{2}} \rightarrow \operatorname{vectar}(0, \ldots, 0,1,0,-, 0,-1,0 \ldots 0) \in \mathbb{R}^{v}$
Definition Let Σ be a loopless signed graph on vertex set V with set of edges E. For each $e \in E$ define a vector $m_{e} \in \mathbb{R}^{V}$ via.

$$
\left(m_{l}\right)_{v}:= \begin{cases}1 & \text { if } v=h(l) \\ \sigma_{(l)}(-1) & \text { if } v=t(l) \\ 0 & \text { otherwise }\end{cases}
$$

Definition: Let M_{Σ} the $V_{\times E}$ matrix with colum $m_{e}: \Pi_{\Sigma}=\left[\begin{array}{l}1 \\ m_{2}\end{array}\| \|\right]$ and for $A \leq E$ let $M_{\Sigma}[A]$ be M_{Σ} restricted to the columes A. IDEA: ${r_{\Sigma}}^{\prime}$ "linear dependency-matroid" of vectors $\left\{m_{e}\right\}_{\text {SeE }} \overline{-}$

PRECISE: Prove For erie $A \subseteq E, r_{2}(A)=\operatorname{vank} \Pi_{\Sigma}[A]$

Lemma: Let Σ be a connected signed graph on n vertices Then rank $M_{\Sigma}= \begin{cases}n-1 & \text { if } \Sigma \text { balanced } \\ n & \text { otherwise }\end{cases}$

Proof: Choose T spanning tree ($\begin{aligned} & \text { set of regular } \\ & \text { edges that is acyl }\end{aligned}$ edges that is acydic
and incident to every vertexes)
Then T has $n-1$ edges, can assume w log that if Σ has an halt-edye, then some halt-edys are attached to leaves of T. Choose v_{0} a leaf of T (incident to an halt-edye, if one exists)
Order the vertices starting with v_{0}, so that $v_{0}, v_{1} \ldots, v_{k}$ spans a connected subgraph of $T, \forall k$

Then, M_{Σ} has the form $M_{\Sigma}=$

- If \sum is balanced: there are vo half-edyes (so: no first column 1) \& every circuit positive.
\longrightarrow Prove that for all $e \notin T, m_{e}$ is linear combination of edges of T

$$
\Rightarrow \operatorname{ranh} T_{\Sigma}=n-1_{1=b(t)}
$$

(Exercise)

- If Σ is not balanceal, then either there is a half-edye, thus Π_{Σ} contains the I colum s \Rightarrow rank $\Pi_{\Sigma}=n$,
OR: There are no half-edyes and there is at least an unbalanced cirent \rightarrow Prove that there is some $e \in E$ s.t. m_{e} lin. indip. from vectors $\left\{\begin{array}{l}\text { Ster. } \\ \text { IV. } 2\end{array}\right.$ ANYWAY: $\operatorname{ranh} M_{\Sigma}=n<b(A)=0$

Theorem Let \sum be a loopless signed graph with edye-set E.
Then for every $A \subseteq E, r_{\Sigma}(A)=\operatorname{rank} M_{\Sigma}[A]$
Proof: Wlog enough to prove for $A=E$ (since $r_{\Sigma}(A)=r(G[A]), M_{\Sigma}[A]=M_{2[A]}$) So we have to prove $r_{\Sigma}(E)=\operatorname{ranh} \Pi_{\Sigma}$
The matrix M_{2} has the form

Here: $\Sigma_{1} . . \Sigma_{n}$ are the conn. cong. of Σ, Σ_{i} vertex set V_{i}, edge set A_{1}.
A_{n}
We know $\operatorname{ranh} \Pi_{\Sigma}=\sum_{i=1}^{n} \operatorname{ranh} M_{\sum_{i}}=\sum_{i=1}^{n}\left(\left|V_{i}\right|-b\left(A_{i}\right)\right)=|V|-b(E) \stackrel{\operatorname{det}}{=} r_{\Sigma}(E)$国

Thus we know that the matricd r_{2} is the matroid associated to the arrangement of hyperplanes $A_{\Sigma}:=\left\{m_{l}^{\perp} \mid e \in E\right\}$,
for instance: number of regions determined by A_{Σ} is $T_{r_{\Sigma}}(2,0)$.
Observe: $\operatorname{Tr}_{r_{\Sigma}}(2,0)=(-1)^{\mid V(-b(E)} \underbrace{X_{\Sigma}(-1)}_{2}$
can be determined by studying colorings of Σ
Examples: root systums/finite Coxeter group.

$$
\varepsilon_{i}=\left(0 \ldots 0 r_{10 \ldots 0}^{i+\ldots}\right)^{\text {place }}
$$

TYPE A_{n-1} : arrangement with normals $\underbrace{\varepsilon_{i}-\varepsilon_{j}}$ in \mathbb{R}^{n}, for all $i<j$

$$
(00 \cdot 0,1,0 \cdots 0,-\frac{1,0 \cdot 0)}{i_{j-h}^{1}} \quad i \underbrace{i^{1}}_{h(e)}+e^{j} d(1)
$$

$K_{4: ~}^{+} \quad \Rightarrow$ these normals are the vectors m_{e}

for a signed," all -positive" complete graph k_{n}^{+} on n vertices:

TYPE A_{n-1} : arrangement with normals $\underbrace{}_{i-\varepsilon_{j}}$ in \mathbb{R}^{n}, for all $i<j$
$k_{4:}^{+} \quad \Rightarrow$ these normals are the vectors m_{e} for a sigued,"all - positive" complete graph K_{n}^{+} on n vertices.

So unite $\sum\left(A_{n-1}\right)=$ complete all-positive sigurd gangs onn-ventions $X_{\Sigma\left(A_{n-1}\right)}(t)=t(t-1) \cdots$, this \#of regions is $n!$ $\left(\begin{array}{l}=\text { order of the Costed } \\ \text { group of type } A_{4-1}, i, e, \\ S_{n}\end{array}\right)$

on n vertices, with

- one halt-edey at every vertex
- blue positive \& one negative regular edge between any two vertices

What is $X_{\Sigma\left(B_{n}\right)}(t)$? For odd t, cor \int with colors $\left\{-\left|\frac{t}{2}\right|, \ldots . .\left|\frac{t}{2}\right|\right\}$

- halt-edjes everywhere \Rightarrow can never use O as a color
- double ("+\&-") edges every where: neighboring vertices camot have neither equal nor opposite colors!

$$
\Rightarrow X_{\Sigma\left(B_{u}\right)}(t)=(t-1)(t-3) \cdots-(t-(2 n-1))
$$

Number of regions $\left(=\#\right.$ of the group): $\left|X_{\sum\left(B_{n}\right)}(-1)\right|=2 n(2 n-2)(2 n-4) \cdots=2^{n} n$!

Type Dn Normals to arraygument: $\varepsilon_{i}-\varepsilon_{j}, \varepsilon_{i}+\varepsilon_{j}, i<j$, in R^{n}

Gouph $\sum\left(D_{n}\right)$: on n vertices, any two vertions joind by a pair of " +1 " edyes

Colorings with t Cood) sigud colors, of $\Sigma\left(D_{n}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\left.n \text {. \#\{sigued } t \text {-coloringe of } \sum\left(B_{n-1}\right)\right\} \quad c \text { if } 0 \text { is used } \\
+\quad \notin\left\{\text { siguad } t \text {-colorings of } 0 \text { forbidden } \sum^{\left.\left(B_{n}\right)\right\}} \leftarrow \text { if } 0\right. \text { never useer } \\
=X_{\sum\left(D_{n}\right)}(t)
\end{array} \\
& c \text { - if } O \text { is used }
\end{aligned}
$$

\Rightarrow number of regious /order of thigroup: $2^{n-1} n!$

Ch. 5 -Integral Slows (and polytopes)
Recall: Integral h. flow on $G=(V, t, h, t)$ $f: E \rightarrow \mathbb{Z}$ s.t. "conservation"

$$
\sum_{e_{0}} \sum_{h(k)=v} f(e)=\sum_{t(l)=v} f(l) \quad, \forall v \in V
$$

$\varphi_{G}^{\mathbb{N}}=n r$. of nowluer-zero integral k.flows =?
Let $A \in E$ Define $G^{\neg A}=\left(V, E, h^{\prime}, t^{\prime}\right)$
st. $\quad h^{\prime}(e)=\left\{\begin{array}{ll}h(e) & \text { if } e \notin A \\ t(e) & \text { if } e \in A\end{array}, t^{\prime}(e)=\left\{\begin{array}{l}t(e) \text { fetA } \\ h(e) \text { if leA }\end{array}\right.\right.$
Tact: If f is integer k. flow on G, then $f^{\prime}: E \rightarrow \pi, f^{\prime}(1):= \begin{cases}f(e) & e \notin A \\ -f(e) & e \in \mathbb{A}\end{cases}$ is again an integer k - flow on $G^{7 A}$

Let $f^{\prime}: E \rightarrow \mathbb{Z}$

$$
f^{\prime}(l)= \begin{cases}f(1) & e \neq e_{0} \\ -f\left(e_{0}\right) & e=e_{0}\end{cases}
$$

then, at v :

$$
\sum_{h^{\prime}(e)=v}^{+m u} f^{\prime}(e)!\sum_{t(k)=v} f^{\prime}(e)
$$

Lemmen: Let f integral k. flow on G, let $A:=\{e \in E \mid f(e)<0\}$.
Then by changing sign of f at every element of A we obtain a integral k.flow $f^{\prime} \geqslant 0$ on $G^{7 A}$.

Del: An integral kiflore is called positive if $f(E)>0$
Corollary: For every nowlure-zers flow f on G there is exactly one $A \subseteq E$ s.t changing sign of f on A yields a positive k. flow on $G^{7 A}$

We obtain:

$$
\begin{aligned}
\varphi_{G}^{\mathbb{N}}(k)=\sum_{A \leq E} & \underbrace{I_{G A}(k)}_{\text {Given graph } H:} \\
& I_{H}(k)=\# \text { positive integral k. Heres. }
\end{aligned}
$$

\Rightarrow New task: determine $I_{H}(k)$.
\Rightarrow New task: determine $I_{H}(k)$.
Idea: consider the "incidence matrix" of $G, A \in \mathbb{R}^{V \times E}$ with

$$
A_{e, v}=\left\{\begin{array}{cl}
1 & \text { if } v=h(e) \\
-1 & \text { if } v=b(e) \\
0 & \text { otherwise. }
\end{array}\right.
$$

$$
\left.A=[\ldots]_{\tau} \ldots \ldots .\right]_{i}^{v_{1}} \begin{aligned}
& v \\
& \vdots
\end{aligned}
$$

Now, a positive k-flow on G is any $f \in \mathbb{Z} \bar{E}$ with

$$
\rightarrow \underset{\text { conservation }}{\rightarrow} \underset{R}{R}, \quad\left(\begin{array}{c}
1 \\
\vdots \\
1 \\
1
\end{array}\right) \leqslant f \leqslant\left(\begin{array}{c}
n \\
\vdots \\
k
\end{array}\right) \leftrightarrow u \text {-flow }
$$

"Relax" \mathbb{L} to R, think linear algebn.
Consider $U:=\left\{x \in \mathbb{R}^{E} \mid A x=0, \underline{0}<x<1\right\}, \quad \bar{U}:=\{\ldots \ldots 0 \leq x \leq 1\}$
Now: $I_{G}(k)=\# \mathbb{Z}^{E} \cap \widetilde{k U}^{\hookleftarrow}\{k \cdot y \mid y \in U\}$ "number of integer points in the k-fold dilation of U " $\int^{\text {Shrmern! }}$ them!

Consider $\mid U:=\left\{x \in \mathbb{R}^{E} \mid A x=0,0 \ll x<1\right\}, \quad \bar{U}:=\{\ldots . .0 \leq x \leq 1\}$
Now: $I_{G}(k)=\# \mathbb{Z}^{E} \cap \mathbb{k U}^{\sigma}\left\{k_{\cdot} \mid y \in U\right\}$
"number of integer points in the k-fold dilation of U "
Ehrhart theory - tool in order to count integer points in dilutions of " $\underbrace{\text { ? }}_{\text {"convex polytopes with } \underbrace{\text { integer vertius" }}_{?} \text { ? }}$
Example: $G=\mathscr{Q}, A=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & -1\end{array}\right] \quad A x=0 \Leftrightarrow\left\{\begin{array}{l}x=\left(x_{1}, x_{2}, x_{3}\right) \\ x_{1}=x_{2}=x_{3}\end{array}\right.$ Boletepe in \mathbb{R}^{2} :

$\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
$x_{1}=x_{2} x_{3}$

